Loading…

Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015

We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2016-09, Vol.121 (9), p.8900-8923
Main Authors: Verkhoglyadova, O. P., Tsurutani, B. T., Mannucci, A. J., Mlynczak, M. G., Hunt, L. A., Paxton, L. J., Komjathy, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3
cites cdi_FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3
container_end_page 8923
container_issue 9
container_start_page 8900
container_title Journal of geophysical research. Space physics
container_volume 121
creator Verkhoglyadova, O. P.
Tsurutani, B. T.
Mannucci, A. J.
Mlynczak, M. G.
Hunt, L. A.
Paxton, L. J.
Komjathy, A.
description We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere‐thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low‐latitude and northern middle‐latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11° latitudinal zones is based on Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high‐speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME‐type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics. Key Points We identify interplanetary plasma regions and analyze ICME intervals on DOY 74‐79 March of 2012, 2013, and 2015 We introduce new metrics for average low‐latitude and northern middle‐latitude VTEC and NO thermospheric emission Our analysis of coupling functions indicates connection and also differences between coupling with the solar wind and IT system response
doi_str_mv 10.1002/2016JA022883
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855366624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855366624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3</originalsourceid><addsrcrecordid>eNqN0c1OAyEQAOCN0USjvfkAJB700CoM7C4cG_8bE40_5w1lZxXdLhW21t58BJ_RJ5FaTYyJRg7MQD4GyCTJJqO7jFLYA8qyQZ8CSMmXkjVgmeopQWH5K-eSriadEO5pHDJusXQteb5ytfZkapuSlN4-2eaWuIpY17gwvkOPby-vbYyjzyXxGMauCRiIbUh75xFJaJ0fBdJgLHTV7pIL3XprHrYDOdCzOYtPg-585l2i40UxSzeSlUrXATufcT25OTq83j_pnZ0fn-73z3pGxFO9vBSV4YbzimpZKSFBahjmQmCWos6oLk2aA0CVIyupQMShURUOU0MVlXnJ15OdRd2xd48TDG0xssFgXesG3SQUTKYpz7IMxD8ozzkwrrJIt37QezfxTfxIAVxyoUB9FPxVMQmKAs2Viqq7UMa7EDxWxdjbkfazgtFi3trie2sj5ws-tTXO_rTF4Piyn4LkwN8BE9uhgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1829020799</pqid></control><display><type>article</type><title>Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Verkhoglyadova, O. P. ; Tsurutani, B. T. ; Mannucci, A. J. ; Mlynczak, M. G. ; Hunt, L. A. ; Paxton, L. J. ; Komjathy, A.</creator><creatorcontrib>Verkhoglyadova, O. P. ; Tsurutani, B. T. ; Mannucci, A. J. ; Mlynczak, M. G. ; Hunt, L. A. ; Paxton, L. J. ; Komjathy, A.</creatorcontrib><description>We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere‐thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low‐latitude and northern middle‐latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11° latitudinal zones is based on Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high‐speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME‐type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics. Key Points We identify interplanetary plasma regions and analyze ICME intervals on DOY 74‐79 March of 2012, 2013, and 2015 We introduce new metrics for average low‐latitude and northern middle‐latitude VTEC and NO thermospheric emission Our analysis of coupling functions indicates connection and also differences between coupling with the solar wind and IT system response</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2016JA022883</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Broadband ; Cooling ; Coronal loops ; Coronal mass ejection ; Coupling ; Driving ability ; Dynamical systems ; Emission measurements ; geomagnetic storm ; Geomagnetic storms ; Geomagnetism ; Global navigation satellite system ; Ground stations ; ICME ; Interplanetary plasma ; Intervals ; Ionosphere ; Ionospheric storms ; Latitude ; Magnetic clouds ; Magnetic storms ; Mesosphere ; Navigation satellites ; Navigation systems ; Nitric oxide ; Plasma physics ; Preconditioning ; Radiation ; Radiometry ; Sheaths ; Solar flares ; Solar physics ; Solar wind ; Storm effects ; Storms ; Systems analysis ; Thermosphere ; Thermospheric composition ; Thermospheric cooling</subject><ispartof>Journal of geophysical research. Space physics, 2016-09, Vol.121 (9), p.8900-8923</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3</citedby><cites>FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3</cites><orcidid>0000-0003-2391-8490 ; 0000-0002-5330-541X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Verkhoglyadova, O. P.</creatorcontrib><creatorcontrib>Tsurutani, B. T.</creatorcontrib><creatorcontrib>Mannucci, A. J.</creatorcontrib><creatorcontrib>Mlynczak, M. G.</creatorcontrib><creatorcontrib>Hunt, L. A.</creatorcontrib><creatorcontrib>Paxton, L. J.</creatorcontrib><creatorcontrib>Komjathy, A.</creatorcontrib><title>Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015</title><title>Journal of geophysical research. Space physics</title><description>We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere‐thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low‐latitude and northern middle‐latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11° latitudinal zones is based on Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high‐speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME‐type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics. Key Points We identify interplanetary plasma regions and analyze ICME intervals on DOY 74‐79 March of 2012, 2013, and 2015 We introduce new metrics for average low‐latitude and northern middle‐latitude VTEC and NO thermospheric emission Our analysis of coupling functions indicates connection and also differences between coupling with the solar wind and IT system response</description><subject>Broadband</subject><subject>Cooling</subject><subject>Coronal loops</subject><subject>Coronal mass ejection</subject><subject>Coupling</subject><subject>Driving ability</subject><subject>Dynamical systems</subject><subject>Emission measurements</subject><subject>geomagnetic storm</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Global navigation satellite system</subject><subject>Ground stations</subject><subject>ICME</subject><subject>Interplanetary plasma</subject><subject>Intervals</subject><subject>Ionosphere</subject><subject>Ionospheric storms</subject><subject>Latitude</subject><subject>Magnetic clouds</subject><subject>Magnetic storms</subject><subject>Mesosphere</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Nitric oxide</subject><subject>Plasma physics</subject><subject>Preconditioning</subject><subject>Radiation</subject><subject>Radiometry</subject><subject>Sheaths</subject><subject>Solar flares</subject><subject>Solar physics</subject><subject>Solar wind</subject><subject>Storm effects</subject><subject>Storms</subject><subject>Systems analysis</subject><subject>Thermosphere</subject><subject>Thermospheric composition</subject><subject>Thermospheric cooling</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c1OAyEQAOCN0USjvfkAJB700CoM7C4cG_8bE40_5w1lZxXdLhW21t58BJ_RJ5FaTYyJRg7MQD4GyCTJJqO7jFLYA8qyQZ8CSMmXkjVgmeopQWH5K-eSriadEO5pHDJusXQteb5ytfZkapuSlN4-2eaWuIpY17gwvkOPby-vbYyjzyXxGMauCRiIbUh75xFJaJ0fBdJgLHTV7pIL3XprHrYDOdCzOYtPg-585l2i40UxSzeSlUrXATufcT25OTq83j_pnZ0fn-73z3pGxFO9vBSV4YbzimpZKSFBahjmQmCWos6oLk2aA0CVIyupQMShURUOU0MVlXnJ15OdRd2xd48TDG0xssFgXesG3SQUTKYpz7IMxD8ozzkwrrJIt37QezfxTfxIAVxyoUB9FPxVMQmKAs2Viqq7UMa7EDxWxdjbkfazgtFi3trie2sj5ws-tTXO_rTF4Piyn4LkwN8BE9uhgA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Verkhoglyadova, O. P.</creator><creator>Tsurutani, B. T.</creator><creator>Mannucci, A. J.</creator><creator>Mlynczak, M. G.</creator><creator>Hunt, L. A.</creator><creator>Paxton, L. J.</creator><creator>Komjathy, A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2391-8490</orcidid><orcidid>https://orcid.org/0000-0002-5330-541X</orcidid></search><sort><creationdate>201609</creationdate><title>Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015</title><author>Verkhoglyadova, O. P. ; Tsurutani, B. T. ; Mannucci, A. J. ; Mlynczak, M. G. ; Hunt, L. A. ; Paxton, L. J. ; Komjathy, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Broadband</topic><topic>Cooling</topic><topic>Coronal loops</topic><topic>Coronal mass ejection</topic><topic>Coupling</topic><topic>Driving ability</topic><topic>Dynamical systems</topic><topic>Emission measurements</topic><topic>geomagnetic storm</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Global navigation satellite system</topic><topic>Ground stations</topic><topic>ICME</topic><topic>Interplanetary plasma</topic><topic>Intervals</topic><topic>Ionosphere</topic><topic>Ionospheric storms</topic><topic>Latitude</topic><topic>Magnetic clouds</topic><topic>Magnetic storms</topic><topic>Mesosphere</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Nitric oxide</topic><topic>Plasma physics</topic><topic>Preconditioning</topic><topic>Radiation</topic><topic>Radiometry</topic><topic>Sheaths</topic><topic>Solar flares</topic><topic>Solar physics</topic><topic>Solar wind</topic><topic>Storm effects</topic><topic>Storms</topic><topic>Systems analysis</topic><topic>Thermosphere</topic><topic>Thermospheric composition</topic><topic>Thermospheric cooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verkhoglyadova, O. P.</creatorcontrib><creatorcontrib>Tsurutani, B. T.</creatorcontrib><creatorcontrib>Mannucci, A. J.</creatorcontrib><creatorcontrib>Mlynczak, M. G.</creatorcontrib><creatorcontrib>Hunt, L. A.</creatorcontrib><creatorcontrib>Paxton, L. J.</creatorcontrib><creatorcontrib>Komjathy, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verkhoglyadova, O. P.</au><au>Tsurutani, B. T.</au><au>Mannucci, A. J.</au><au>Mlynczak, M. G.</au><au>Hunt, L. A.</au><au>Paxton, L. J.</au><au>Komjathy, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-09</date><risdate>2016</risdate><volume>121</volume><issue>9</issue><spage>8900</spage><epage>8923</epage><pages>8900-8923</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere‐thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low‐latitude and northern middle‐latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11° latitudinal zones is based on Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high‐speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME‐type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics. Key Points We identify interplanetary plasma regions and analyze ICME intervals on DOY 74‐79 March of 2012, 2013, and 2015 We introduce new metrics for average low‐latitude and northern middle‐latitude VTEC and NO thermospheric emission Our analysis of coupling functions indicates connection and also differences between coupling with the solar wind and IT system response</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JA022883</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2391-8490</orcidid><orcidid>https://orcid.org/0000-0002-5330-541X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2016-09, Vol.121 (9), p.8900-8923
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_miscellaneous_1855366624
source Wiley-Blackwell Read & Publish Collection
subjects Broadband
Cooling
Coronal loops
Coronal mass ejection
Coupling
Driving ability
Dynamical systems
Emission measurements
geomagnetic storm
Geomagnetic storms
Geomagnetism
Global navigation satellite system
Ground stations
ICME
Interplanetary plasma
Intervals
Ionosphere
Ionospheric storms
Latitude
Magnetic clouds
Magnetic storms
Mesosphere
Navigation satellites
Navigation systems
Nitric oxide
Plasma physics
Preconditioning
Radiation
Radiometry
Sheaths
Solar flares
Solar physics
Solar wind
Storm effects
Storms
Systems analysis
Thermosphere
Thermospheric composition
Thermospheric cooling
title Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20wind%20driving%20of%20ionosphere%E2%80%90thermosphere%20responses%20in%20three%20storms%20near%20St.%20Patrick's%20Day%20in%202012,%202013,%20and%202015&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Verkhoglyadova,%20O.%20P.&rft.date=2016-09&rft.volume=121&rft.issue=9&rft.spage=8900&rft.epage=8923&rft.pages=8900-8923&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2016JA022883&rft_dat=%3Cproquest_cross%3E1855366624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1829020799&rft_id=info:pmid/&rfr_iscdi=true