Loading…
Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015
We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers...
Saved in:
Published in: | Journal of geophysical research. Space physics 2016-09, Vol.121 (9), p.8900-8923 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3 |
container_end_page | 8923 |
container_issue | 9 |
container_start_page | 8900 |
container_title | Journal of geophysical research. Space physics |
container_volume | 121 |
creator | Verkhoglyadova, O. P. Tsurutani, B. T. Mannucci, A. J. Mlynczak, M. G. Hunt, L. A. Paxton, L. J. Komjathy, A. |
description | We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere‐thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low‐latitude and northern middle‐latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11° latitudinal zones is based on Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high‐speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME‐type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics.
Key Points
We identify interplanetary plasma regions and analyze ICME intervals on DOY 74‐79 March of 2012, 2013, and 2015
We introduce new metrics for average low‐latitude and northern middle‐latitude VTEC and NO thermospheric emission
Our analysis of coupling functions indicates connection and also differences between coupling with the solar wind and IT system response |
doi_str_mv | 10.1002/2016JA022883 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855366624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855366624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3</originalsourceid><addsrcrecordid>eNqN0c1OAyEQAOCN0USjvfkAJB700CoM7C4cG_8bE40_5w1lZxXdLhW21t58BJ_RJ5FaTYyJRg7MQD4GyCTJJqO7jFLYA8qyQZ8CSMmXkjVgmeopQWH5K-eSriadEO5pHDJusXQteb5ytfZkapuSlN4-2eaWuIpY17gwvkOPby-vbYyjzyXxGMauCRiIbUh75xFJaJ0fBdJgLHTV7pIL3XprHrYDOdCzOYtPg-585l2i40UxSzeSlUrXATufcT25OTq83j_pnZ0fn-73z3pGxFO9vBSV4YbzimpZKSFBahjmQmCWos6oLk2aA0CVIyupQMShURUOU0MVlXnJ15OdRd2xd48TDG0xssFgXesG3SQUTKYpz7IMxD8ozzkwrrJIt37QezfxTfxIAVxyoUB9FPxVMQmKAs2Viqq7UMa7EDxWxdjbkfazgtFi3trie2sj5ws-tTXO_rTF4Piyn4LkwN8BE9uhgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1829020799</pqid></control><display><type>article</type><title>Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Verkhoglyadova, O. P. ; Tsurutani, B. T. ; Mannucci, A. J. ; Mlynczak, M. G. ; Hunt, L. A. ; Paxton, L. J. ; Komjathy, A.</creator><creatorcontrib>Verkhoglyadova, O. P. ; Tsurutani, B. T. ; Mannucci, A. J. ; Mlynczak, M. G. ; Hunt, L. A. ; Paxton, L. J. ; Komjathy, A.</creatorcontrib><description>We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere‐thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low‐latitude and northern middle‐latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11° latitudinal zones is based on Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high‐speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME‐type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics.
Key Points
We identify interplanetary plasma regions and analyze ICME intervals on DOY 74‐79 March of 2012, 2013, and 2015
We introduce new metrics for average low‐latitude and northern middle‐latitude VTEC and NO thermospheric emission
Our analysis of coupling functions indicates connection and also differences between coupling with the solar wind and IT system response</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2016JA022883</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Broadband ; Cooling ; Coronal loops ; Coronal mass ejection ; Coupling ; Driving ability ; Dynamical systems ; Emission measurements ; geomagnetic storm ; Geomagnetic storms ; Geomagnetism ; Global navigation satellite system ; Ground stations ; ICME ; Interplanetary plasma ; Intervals ; Ionosphere ; Ionospheric storms ; Latitude ; Magnetic clouds ; Magnetic storms ; Mesosphere ; Navigation satellites ; Navigation systems ; Nitric oxide ; Plasma physics ; Preconditioning ; Radiation ; Radiometry ; Sheaths ; Solar flares ; Solar physics ; Solar wind ; Storm effects ; Storms ; Systems analysis ; Thermosphere ; Thermospheric composition ; Thermospheric cooling</subject><ispartof>Journal of geophysical research. Space physics, 2016-09, Vol.121 (9), p.8900-8923</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3</citedby><cites>FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3</cites><orcidid>0000-0003-2391-8490 ; 0000-0002-5330-541X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Verkhoglyadova, O. P.</creatorcontrib><creatorcontrib>Tsurutani, B. T.</creatorcontrib><creatorcontrib>Mannucci, A. J.</creatorcontrib><creatorcontrib>Mlynczak, M. G.</creatorcontrib><creatorcontrib>Hunt, L. A.</creatorcontrib><creatorcontrib>Paxton, L. J.</creatorcontrib><creatorcontrib>Komjathy, A.</creatorcontrib><title>Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015</title><title>Journal of geophysical research. Space physics</title><description>We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere‐thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low‐latitude and northern middle‐latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11° latitudinal zones is based on Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high‐speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME‐type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics.
Key Points
We identify interplanetary plasma regions and analyze ICME intervals on DOY 74‐79 March of 2012, 2013, and 2015
We introduce new metrics for average low‐latitude and northern middle‐latitude VTEC and NO thermospheric emission
Our analysis of coupling functions indicates connection and also differences between coupling with the solar wind and IT system response</description><subject>Broadband</subject><subject>Cooling</subject><subject>Coronal loops</subject><subject>Coronal mass ejection</subject><subject>Coupling</subject><subject>Driving ability</subject><subject>Dynamical systems</subject><subject>Emission measurements</subject><subject>geomagnetic storm</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Global navigation satellite system</subject><subject>Ground stations</subject><subject>ICME</subject><subject>Interplanetary plasma</subject><subject>Intervals</subject><subject>Ionosphere</subject><subject>Ionospheric storms</subject><subject>Latitude</subject><subject>Magnetic clouds</subject><subject>Magnetic storms</subject><subject>Mesosphere</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Nitric oxide</subject><subject>Plasma physics</subject><subject>Preconditioning</subject><subject>Radiation</subject><subject>Radiometry</subject><subject>Sheaths</subject><subject>Solar flares</subject><subject>Solar physics</subject><subject>Solar wind</subject><subject>Storm effects</subject><subject>Storms</subject><subject>Systems analysis</subject><subject>Thermosphere</subject><subject>Thermospheric composition</subject><subject>Thermospheric cooling</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c1OAyEQAOCN0USjvfkAJB700CoM7C4cG_8bE40_5w1lZxXdLhW21t58BJ_RJ5FaTYyJRg7MQD4GyCTJJqO7jFLYA8qyQZ8CSMmXkjVgmeopQWH5K-eSriadEO5pHDJusXQteb5ytfZkapuSlN4-2eaWuIpY17gwvkOPby-vbYyjzyXxGMauCRiIbUh75xFJaJ0fBdJgLHTV7pIL3XprHrYDOdCzOYtPg-585l2i40UxSzeSlUrXATufcT25OTq83j_pnZ0fn-73z3pGxFO9vBSV4YbzimpZKSFBahjmQmCWos6oLk2aA0CVIyupQMShURUOU0MVlXnJ15OdRd2xd48TDG0xssFgXesG3SQUTKYpz7IMxD8ozzkwrrJIt37QezfxTfxIAVxyoUB9FPxVMQmKAs2Viqq7UMa7EDxWxdjbkfazgtFi3trie2sj5ws-tTXO_rTF4Piyn4LkwN8BE9uhgA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Verkhoglyadova, O. P.</creator><creator>Tsurutani, B. T.</creator><creator>Mannucci, A. J.</creator><creator>Mlynczak, M. G.</creator><creator>Hunt, L. A.</creator><creator>Paxton, L. J.</creator><creator>Komjathy, A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2391-8490</orcidid><orcidid>https://orcid.org/0000-0002-5330-541X</orcidid></search><sort><creationdate>201609</creationdate><title>Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015</title><author>Verkhoglyadova, O. P. ; Tsurutani, B. T. ; Mannucci, A. J. ; Mlynczak, M. G. ; Hunt, L. A. ; Paxton, L. J. ; Komjathy, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Broadband</topic><topic>Cooling</topic><topic>Coronal loops</topic><topic>Coronal mass ejection</topic><topic>Coupling</topic><topic>Driving ability</topic><topic>Dynamical systems</topic><topic>Emission measurements</topic><topic>geomagnetic storm</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Global navigation satellite system</topic><topic>Ground stations</topic><topic>ICME</topic><topic>Interplanetary plasma</topic><topic>Intervals</topic><topic>Ionosphere</topic><topic>Ionospheric storms</topic><topic>Latitude</topic><topic>Magnetic clouds</topic><topic>Magnetic storms</topic><topic>Mesosphere</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Nitric oxide</topic><topic>Plasma physics</topic><topic>Preconditioning</topic><topic>Radiation</topic><topic>Radiometry</topic><topic>Sheaths</topic><topic>Solar flares</topic><topic>Solar physics</topic><topic>Solar wind</topic><topic>Storm effects</topic><topic>Storms</topic><topic>Systems analysis</topic><topic>Thermosphere</topic><topic>Thermospheric composition</topic><topic>Thermospheric cooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verkhoglyadova, O. P.</creatorcontrib><creatorcontrib>Tsurutani, B. T.</creatorcontrib><creatorcontrib>Mannucci, A. J.</creatorcontrib><creatorcontrib>Mlynczak, M. G.</creatorcontrib><creatorcontrib>Hunt, L. A.</creatorcontrib><creatorcontrib>Paxton, L. J.</creatorcontrib><creatorcontrib>Komjathy, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verkhoglyadova, O. P.</au><au>Tsurutani, B. T.</au><au>Mannucci, A. J.</au><au>Mlynczak, M. G.</au><au>Hunt, L. A.</au><au>Paxton, L. J.</au><au>Komjathy, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-09</date><risdate>2016</risdate><volume>121</volume><issue>9</issue><spage>8900</spage><epage>8923</epage><pages>8900-8923</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)‐driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74–79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere‐thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low‐latitude and northern middle‐latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11° latitudinal zones is based on Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high‐speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME‐type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics.
Key Points
We identify interplanetary plasma regions and analyze ICME intervals on DOY 74‐79 March of 2012, 2013, and 2015
We introduce new metrics for average low‐latitude and northern middle‐latitude VTEC and NO thermospheric emission
Our analysis of coupling functions indicates connection and also differences between coupling with the solar wind and IT system response</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JA022883</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2391-8490</orcidid><orcidid>https://orcid.org/0000-0002-5330-541X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2016-09, Vol.121 (9), p.8900-8923 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855366624 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Broadband Cooling Coronal loops Coronal mass ejection Coupling Driving ability Dynamical systems Emission measurements geomagnetic storm Geomagnetic storms Geomagnetism Global navigation satellite system Ground stations ICME Interplanetary plasma Intervals Ionosphere Ionospheric storms Latitude Magnetic clouds Magnetic storms Mesosphere Navigation satellites Navigation systems Nitric oxide Plasma physics Preconditioning Radiation Radiometry Sheaths Solar flares Solar physics Solar wind Storm effects Storms Systems analysis Thermosphere Thermospheric composition Thermospheric cooling |
title | Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20wind%20driving%20of%20ionosphere%E2%80%90thermosphere%20responses%20in%20three%20storms%20near%20St.%20Patrick's%20Day%20in%202012,%202013,%20and%202015&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Verkhoglyadova,%20O.%20P.&rft.date=2016-09&rft.volume=121&rft.issue=9&rft.spage=8900&rft.epage=8923&rft.pages=8900-8923&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2016JA022883&rft_dat=%3Cproquest_cross%3E1855366624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4012-7d4fc3c33f0a8f94828a2b744e65ea60adc57222f7e1d04eeebc9feb5c09087d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1829020799&rft_id=info:pmid/&rfr_iscdi=true |