Loading…

Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates

We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy mea...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2016-11, Vol.9 (11), p.3279-3290
Main Authors: Surrente, Alessandro, Carron, Romain, Gallo, Pascal, Rudra, Alok, Dwir, Benjamin, Kapon, Eli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-f1a9df209ed7826f2461a30e7d134e44ad87aad519cc1fff7269665b7c378e43
cites cdi_FETCH-LOGICAL-c479t-f1a9df209ed7826f2461a30e7d134e44ad87aad519cc1fff7269665b7c378e43
container_end_page 3290
container_issue 11
container_start_page 3279
container_title Nano research
container_volume 9
creator Surrente, Alessandro
Carron, Romain
Gallo, Pascal
Rudra, Alok
Dwir, Benjamin
Kapon, Eli
description We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.
doi_str_mv 10.1007/s12274-016-1206-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855373194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671341900</cqvip_id><sourcerecordid>1837297021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-f1a9df209ed7826f2461a30e7d134e44ad87aad519cc1fff7269665b7c378e43</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEEqXwANwsuHAJeBzHjo-oooBUiQO9W7PJOJsqsbO2A91X4KnxagtIHBC-jA_fN780f1W9BP4WONfvEgihZc1B1SC4qvWj6gKM6Wpe3uNffxDyafUspTvOlQDZXVQ_vtLsahfignkKngXH9nSPY_A4M48-ZFrWGTMlViA2xvA970_Ueoy4TEOhDhv6vC1sCDmx3ZEtlHEOcUQ_9ewbrkVb95iI0TplvD-yErNizhQ9DSxtu5TjKeB59cThnOjFw7ysbq8_3F59qm--fPx89f6m7qU2uXaAZnCCGxp0J5QTUgE2nPQAjSQpceg04tCC6XtwzmmhjFLtTveN7kg2l9Wb89o1hsNGKdtlSj3NM3oKW7LQtW2jGzD_gzZaGM0FFPT1X-hd2GI5YrKCc5Cat50pFJypPoaUIjm7xmnBeLTA7alHe-7Rlh7tqUeriyPOTiqsHyn-2fwv6dVD0D748VC830lKlzuB4bz5Cc7BrhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001470589</pqid></control><display><type>article</type><title>Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates</title><source>Springer Nature</source><creator>Surrente, Alessandro ; Carron, Romain ; Gallo, Pascal ; Rudra, Alok ; Dwir, Benjamin ; Kapon, Eli</creator><creatorcontrib>Surrente, Alessandro ; Carron, Romain ; Gallo, Pascal ; Rudra, Alok ; Dwir, Benjamin ; Kapon, Eli</creatorcontrib><description>We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-016-1206-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Adatoms ; Atomic force microscopy ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Computer simulation ; Condensed Matter Physics ; Curvature ; Elevation ; Epitaxial growth ; Epitaxial layers ; Epitaxy ; Fluxes ; Formations ; Gallium arsenide ; Growth conditions ; Materials Science ; Metalorganic chemical vapor deposition ; Nanostructure ; Nanotechnology ; Photons ; Pyramids ; Quantum dots ; Quantum theory ; Research Article ; Substrates ; Symmetry ; Thin films ; Vapors ; 六边形 ; 图形衬底 ; 外延法 ; 有机金属 ; 模板 ; 气相外延 ; 自形成 ; 量子点</subject><ispartof>Nano research, 2016-11, Vol.9 (11), p.3279-3290</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Nano Research is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-f1a9df209ed7826f2461a30e7d134e44ad87aad519cc1fff7269665b7c378e43</citedby><cites>FETCH-LOGICAL-c479t-f1a9df209ed7826f2461a30e7d134e44ad87aad519cc1fff7269665b7c378e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Surrente, Alessandro</creatorcontrib><creatorcontrib>Carron, Romain</creatorcontrib><creatorcontrib>Gallo, Pascal</creatorcontrib><creatorcontrib>Rudra, Alok</creatorcontrib><creatorcontrib>Dwir, Benjamin</creatorcontrib><creatorcontrib>Kapon, Eli</creatorcontrib><title>Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.</description><subject>Adatoms</subject><subject>Atomic force microscopy</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Curvature</subject><subject>Elevation</subject><subject>Epitaxial growth</subject><subject>Epitaxial layers</subject><subject>Epitaxy</subject><subject>Fluxes</subject><subject>Formations</subject><subject>Gallium arsenide</subject><subject>Growth conditions</subject><subject>Materials Science</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Photons</subject><subject>Pyramids</subject><subject>Quantum dots</subject><subject>Quantum theory</subject><subject>Research Article</subject><subject>Substrates</subject><subject>Symmetry</subject><subject>Thin films</subject><subject>Vapors</subject><subject>六边形</subject><subject>图形衬底</subject><subject>外延法</subject><subject>有机金属</subject><subject>模板</subject><subject>气相外延</subject><subject>自形成</subject><subject>量子点</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEEqXwANwsuHAJeBzHjo-oooBUiQO9W7PJOJsqsbO2A91X4KnxagtIHBC-jA_fN780f1W9BP4WONfvEgihZc1B1SC4qvWj6gKM6Wpe3uNffxDyafUspTvOlQDZXVQ_vtLsahfignkKngXH9nSPY_A4M48-ZFrWGTMlViA2xvA970_Ueoy4TEOhDhv6vC1sCDmx3ZEtlHEOcUQ_9ewbrkVb95iI0TplvD-yErNizhQ9DSxtu5TjKeB59cThnOjFw7ysbq8_3F59qm--fPx89f6m7qU2uXaAZnCCGxp0J5QTUgE2nPQAjSQpceg04tCC6XtwzmmhjFLtTveN7kg2l9Wb89o1hsNGKdtlSj3NM3oKW7LQtW2jGzD_gzZaGM0FFPT1X-hd2GI5YrKCc5Cat50pFJypPoaUIjm7xmnBeLTA7alHe-7Rlh7tqUeriyPOTiqsHyn-2fwv6dVD0D748VC830lKlzuB4bz5Cc7BrhE</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Surrente, Alessandro</creator><creator>Carron, Romain</creator><creator>Gallo, Pascal</creator><creator>Rudra, Alok</creator><creator>Dwir, Benjamin</creator><creator>Kapon, Eli</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20161101</creationdate><title>Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates</title><author>Surrente, Alessandro ; Carron, Romain ; Gallo, Pascal ; Rudra, Alok ; Dwir, Benjamin ; Kapon, Eli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-f1a9df209ed7826f2461a30e7d134e44ad87aad519cc1fff7269665b7c378e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adatoms</topic><topic>Atomic force microscopy</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Curvature</topic><topic>Elevation</topic><topic>Epitaxial growth</topic><topic>Epitaxial layers</topic><topic>Epitaxy</topic><topic>Fluxes</topic><topic>Formations</topic><topic>Gallium arsenide</topic><topic>Growth conditions</topic><topic>Materials Science</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Photons</topic><topic>Pyramids</topic><topic>Quantum dots</topic><topic>Quantum theory</topic><topic>Research Article</topic><topic>Substrates</topic><topic>Symmetry</topic><topic>Thin films</topic><topic>Vapors</topic><topic>六边形</topic><topic>图形衬底</topic><topic>外延法</topic><topic>有机金属</topic><topic>模板</topic><topic>气相外延</topic><topic>自形成</topic><topic>量子点</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surrente, Alessandro</creatorcontrib><creatorcontrib>Carron, Romain</creatorcontrib><creatorcontrib>Gallo, Pascal</creatorcontrib><creatorcontrib>Rudra, Alok</creatorcontrib><creatorcontrib>Dwir, Benjamin</creatorcontrib><creatorcontrib>Kapon, Eli</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surrente, Alessandro</au><au>Carron, Romain</au><au>Gallo, Pascal</au><au>Rudra, Alok</au><au>Dwir, Benjamin</au><au>Kapon, Eli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>9</volume><issue>11</issue><spage>3279</spage><epage>3290</epage><pages>3279-3290</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-016-1206-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2016-11, Vol.9 (11), p.3279-3290
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_miscellaneous_1855373194
source Springer Nature
subjects Adatoms
Atomic force microscopy
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Computer simulation
Condensed Matter Physics
Curvature
Elevation
Epitaxial growth
Epitaxial layers
Epitaxy
Fluxes
Formations
Gallium arsenide
Growth conditions
Materials Science
Metalorganic chemical vapor deposition
Nanostructure
Nanotechnology
Photons
Pyramids
Quantum dots
Quantum theory
Research Article
Substrates
Symmetry
Thin films
Vapors
六边形
图形衬底
外延法
有机金属
模板
气相外延
自形成
量子点
title Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-formation%20of%20hexagonal%20nanotemplates%20for%20growth%20of%20pyramidal%20quantum%20dots%20by%20metalorganic%20vapor%20phase%20epitaxy%20on%20patterned%20substrates&rft.jtitle=Nano%20research&rft.au=Surrente,%20Alessandro&rft.date=2016-11-01&rft.volume=9&rft.issue=11&rft.spage=3279&rft.epage=3290&rft.pages=3279-3290&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-016-1206-7&rft_dat=%3Cproquest_cross%3E1837297021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-f1a9df209ed7826f2461a30e7d134e44ad87aad519cc1fff7269665b7c378e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001470589&rft_id=info:pmid/&rft_cqvip_id=671341900&rfr_iscdi=true