Loading…

Distortion Optimization of Engine Cylinder Liner Using Spectrum Characterization and Parametric Analysis

In an automotive powertrain system, the cylinder liner is one of the most critical components which possesses the intricate structural configurations coupled with complex pattern of various operational loads. This paper attempts to develop a concrete and practical procedure for the optimization of c...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-11
Main Authors: Yang, Zhaohui, Yu, Tianxiang, Li, Baotong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In an automotive powertrain system, the cylinder liner is one of the most critical components which possesses the intricate structural configurations coupled with complex pattern of various operational loads. This paper attempts to develop a concrete and practical procedure for the optimization of cylinder liner distortion for achieving future requirements regarding exhaust emissions, fuel economy, and oil consumptions. First, numerical calculation based on finite element method (FEM) and computational fluid dynamics (CFD) is performed to capture the mechanism of cylinder liner distortion under actual engine operation conditions. Then, a spectrum analysis approach is developed to describe the distribution characteristic of operational loads (thermal and mechanical) around the circumference of a distorted cylinder bore profile; the FFT procedure provides an efficient way to implement this calculation. With this approach, a relationship between the dominant order of distortion and special operational load is obtained; the design features which are critically relative to cylinder liner distortion are also identified through spectrum analysis. After characterizing the variation tendency of each dominant order of distortion through parametric analysis, a new design scheme is established to implement the distortion optimization. Simulation results indicate that a much better solution is obtained by using the proposed scheme.
ISSN:1024-123X
1563-5147
DOI:10.1155/2016/9212613