Loading…

State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems

This paper presents a general framework for the doubly fed induction generator connected to a complex power system in order to facilitate the dynamic estimation of its states using noisy PMU measurements. State estimation considering the whole power system with the occurrence of electric faults is p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2016-11, Vol.31 (6), p.4935-4944
Main Authors: Shenglong Yu, Emami, Kianoush, Fernando, Tyrone, Iu, Herbert H. C., Kit Po Wong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-2d2e8835887013934e376616cdfe4c9c042cf7ad073f42570079e9799172b76f3
cites cdi_FETCH-LOGICAL-c328t-2d2e8835887013934e376616cdfe4c9c042cf7ad073f42570079e9799172b76f3
container_end_page 4944
container_issue 6
container_start_page 4935
container_title IEEE transactions on power systems
container_volume 31
creator Shenglong Yu
Emami, Kianoush
Fernando, Tyrone
Iu, Herbert H. C.
Kit Po Wong
description This paper presents a general framework for the doubly fed induction generator connected to a complex power system in order to facilitate the dynamic estimation of its states using noisy PMU measurements. State estimation considering the whole power system with the occurrence of electric faults is performed using the Unscented Kalman Filter (UKF) with a bad data detection scheme. Such a state estimation scheme for a DFIG is important because not all dynamic states of a DFIG are easily measurable. Furthermore, the proposed state estimation technique is decentralized and the network topology of the entire power system is taken into consideration in the estimation process. In order to enhance the error tolerance and self-correction of the power system, bad data detection technique is implemented. A performance comparison with Extended Kalman Filter (EKF) is also discussed.
doi_str_mv 10.1109/TPWRS.2015.2507620
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855375519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7384773</ieee_id><sourcerecordid>4225130311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-2d2e8835887013934e376616cdfe4c9c042cf7ad073f42570079e9799172b76f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_gF4WvHhJnd3NZnePUttaECy2Um8h3UwgJc3W3QTtvzf9wIOngXeedxgeQm4ZDBgD87iYLd_nAw5MDrgElXA4Iz0mpY4gUeac9EBrGWkj4ZJchbAGgKRb9MjnvMkapKPQlJusKV1NXUGfXbuqdnSMOZ3WeWsP-QRr9FnjPF2WdU4XrV-VNdKypkO32Vb4Q2fuGz2d70KDm3BNLoqsCnhzmn3yMR4thi_R69tkOnx6jazguol4zlFrIbVWwIQRMQqVJCyxeYGxNRZibguV5aBEEXOpAJRBo4xhiq9UUog-eTje3Xr31WJo0k0ZLFZVVqNrQ8q0lEJJyUyH3v9D1671dfddRwnGDTMm7ih-pKx3IXgs0q3v3PhdyiDdy04PstO97PQkuyvdHUslIv4VlNCxUkL8At5heY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831291994</pqid></control><display><type>article</type><title>State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shenglong Yu ; Emami, Kianoush ; Fernando, Tyrone ; Iu, Herbert H. C. ; Kit Po Wong</creator><creatorcontrib>Shenglong Yu ; Emami, Kianoush ; Fernando, Tyrone ; Iu, Herbert H. C. ; Kit Po Wong</creatorcontrib><description>This paper presents a general framework for the doubly fed induction generator connected to a complex power system in order to facilitate the dynamic estimation of its states using noisy PMU measurements. State estimation considering the whole power system with the occurrence of electric faults is performed using the Unscented Kalman Filter (UKF) with a bad data detection scheme. Such a state estimation scheme for a DFIG is important because not all dynamic states of a DFIG are easily measurable. Furthermore, the proposed state estimation technique is decentralized and the network topology of the entire power system is taken into consideration in the estimation process. In order to enhance the error tolerance and self-correction of the power system, bad data detection technique is implemented. A performance comparison with Extended Kalman Filter (EKF) is also discussed.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2015.2507620</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bad data detection ; doubly fed induction generator (DFIG) ; Dynamical systems ; Dynamics ; EKF ; Electric power systems ; Error detection ; Induction generators ; Mathematical model ; PMU ; Power supply ; Power system dynamics ; Rotors ; State estimation ; Stators ; Tolerances ; UKF ; Wind turbines</subject><ispartof>IEEE transactions on power systems, 2016-11, Vol.31 (6), p.4935-4944</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-2d2e8835887013934e376616cdfe4c9c042cf7ad073f42570079e9799172b76f3</citedby><cites>FETCH-LOGICAL-c328t-2d2e8835887013934e376616cdfe4c9c042cf7ad073f42570079e9799172b76f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7384773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Shenglong Yu</creatorcontrib><creatorcontrib>Emami, Kianoush</creatorcontrib><creatorcontrib>Fernando, Tyrone</creatorcontrib><creatorcontrib>Iu, Herbert H. C.</creatorcontrib><creatorcontrib>Kit Po Wong</creatorcontrib><title>State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a general framework for the doubly fed induction generator connected to a complex power system in order to facilitate the dynamic estimation of its states using noisy PMU measurements. State estimation considering the whole power system with the occurrence of electric faults is performed using the Unscented Kalman Filter (UKF) with a bad data detection scheme. Such a state estimation scheme for a DFIG is important because not all dynamic states of a DFIG are easily measurable. Furthermore, the proposed state estimation technique is decentralized and the network topology of the entire power system is taken into consideration in the estimation process. In order to enhance the error tolerance and self-correction of the power system, bad data detection technique is implemented. A performance comparison with Extended Kalman Filter (EKF) is also discussed.</description><subject>Bad data detection</subject><subject>doubly fed induction generator (DFIG)</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>EKF</subject><subject>Electric power systems</subject><subject>Error detection</subject><subject>Induction generators</subject><subject>Mathematical model</subject><subject>PMU</subject><subject>Power supply</subject><subject>Power system dynamics</subject><subject>Rotors</subject><subject>State estimation</subject><subject>Stators</subject><subject>Tolerances</subject><subject>UKF</subject><subject>Wind turbines</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFb_gF4WvHhJnd3NZnePUttaECy2Um8h3UwgJc3W3QTtvzf9wIOngXeedxgeQm4ZDBgD87iYLd_nAw5MDrgElXA4Iz0mpY4gUeac9EBrGWkj4ZJchbAGgKRb9MjnvMkapKPQlJusKV1NXUGfXbuqdnSMOZ3WeWsP-QRr9FnjPF2WdU4XrV-VNdKypkO32Vb4Q2fuGz2d70KDm3BNLoqsCnhzmn3yMR4thi_R69tkOnx6jazguol4zlFrIbVWwIQRMQqVJCyxeYGxNRZibguV5aBEEXOpAJRBo4xhiq9UUog-eTje3Xr31WJo0k0ZLFZVVqNrQ8q0lEJJyUyH3v9D1671dfddRwnGDTMm7ih-pKx3IXgs0q3v3PhdyiDdy04PstO97PQkuyvdHUslIv4VlNCxUkL8At5heY0</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Shenglong Yu</creator><creator>Emami, Kianoush</creator><creator>Fernando, Tyrone</creator><creator>Iu, Herbert H. C.</creator><creator>Kit Po Wong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201611</creationdate><title>State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems</title><author>Shenglong Yu ; Emami, Kianoush ; Fernando, Tyrone ; Iu, Herbert H. C. ; Kit Po Wong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-2d2e8835887013934e376616cdfe4c9c042cf7ad073f42570079e9799172b76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bad data detection</topic><topic>doubly fed induction generator (DFIG)</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>EKF</topic><topic>Electric power systems</topic><topic>Error detection</topic><topic>Induction generators</topic><topic>Mathematical model</topic><topic>PMU</topic><topic>Power supply</topic><topic>Power system dynamics</topic><topic>Rotors</topic><topic>State estimation</topic><topic>Stators</topic><topic>Tolerances</topic><topic>UKF</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shenglong Yu</creatorcontrib><creatorcontrib>Emami, Kianoush</creatorcontrib><creatorcontrib>Fernando, Tyrone</creatorcontrib><creatorcontrib>Iu, Herbert H. C.</creatorcontrib><creatorcontrib>Kit Po Wong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shenglong Yu</au><au>Emami, Kianoush</au><au>Fernando, Tyrone</au><au>Iu, Herbert H. C.</au><au>Kit Po Wong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2016-11</date><risdate>2016</risdate><volume>31</volume><issue>6</issue><spage>4935</spage><epage>4944</epage><pages>4935-4944</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a general framework for the doubly fed induction generator connected to a complex power system in order to facilitate the dynamic estimation of its states using noisy PMU measurements. State estimation considering the whole power system with the occurrence of electric faults is performed using the Unscented Kalman Filter (UKF) with a bad data detection scheme. Such a state estimation scheme for a DFIG is important because not all dynamic states of a DFIG are easily measurable. Furthermore, the proposed state estimation technique is decentralized and the network topology of the entire power system is taken into consideration in the estimation process. In order to enhance the error tolerance and self-correction of the power system, bad data detection technique is implemented. A performance comparison with Extended Kalman Filter (EKF) is also discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2015.2507620</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2016-11, Vol.31 (6), p.4935-4944
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_1855375519
source IEEE Electronic Library (IEL) Journals
subjects Bad data detection
doubly fed induction generator (DFIG)
Dynamical systems
Dynamics
EKF
Electric power systems
Error detection
Induction generators
Mathematical model
PMU
Power supply
Power system dynamics
Rotors
State estimation
Stators
Tolerances
UKF
Wind turbines
title State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20Estimation%20of%20Doubly%20Fed%20Induction%20Generator%20Wind%20Turbine%20in%20Complex%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Shenglong%20Yu&rft.date=2016-11&rft.volume=31&rft.issue=6&rft.spage=4935&rft.epage=4944&rft.pages=4935-4944&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2015.2507620&rft_dat=%3Cproquest_ieee_%3E4225130311%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-2d2e8835887013934e376616cdfe4c9c042cf7ad073f42570079e9799172b76f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831291994&rft_id=info:pmid/&rft_ieee_id=7384773&rfr_iscdi=true