Loading…

Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods

We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regres...

Full description

Saved in:
Bibliographic Details
Published in:International journal of navigation and observation 2016, Vol.2016, p.1-18
Main Authors: Ouassou, Mohammed, Kristiansen, Oddgeir, Gjevestad, Jon G. O., Jacobsen, Knut Stanley, Andalsvik, Yngvild L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523
cites cdi_FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523
container_end_page 18
container_issue
container_start_page 1
container_title International journal of navigation and observation
container_volume 2016
creator Ouassou, Mohammed
Kristiansen, Oddgeir
Gjevestad, Jon G. O.
Jacobsen, Knut Stanley
Andalsvik, Yngvild L.
description We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods.
doi_str_mv 10.1155/2016/3582176
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855375654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855375654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523</originalsourceid><addsrcrecordid>eNqN0U1PwyAYB3BiNHFOb34AEi8mWgelvNTbXKYuTk18udowoI6lKxU6jd9emu7kwXiCwI8nz8MfgGOMLjCmdJQizEaEihRztgMGmAmeMITE7nZP8xztg4MQVgixFGV8AN6mobVr2VpXQ1fCZ2Xr1lZVfzCrtVUmXMIxfHCfpoLjpvFOqiW8ksFoGMncKVnBO-PreP1k3r0JoXt6b9ql0-EQ7JWyCuZouw7B6_X0ZXKbzB9vZpPxPJFEUJawBacoxVjz0iiGWa6I1GKRcyk155SoLMUi40hKZLTkjJcLrEuGlORUI5qSITjt68b-PjYmtMXaBmXiILVxm1BgQSnhlNHsH5RwkpGMdVVPftGV2_g6DhIVTgXJeUaiOu-V8i4Eb8qi8fFL_XeBUdHlUnS5FNtcIj_r-dLWWn7Zv_UPP4uKzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812839743</pqid></control><display><type>article</type><title>Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ouassou, Mohammed ; Kristiansen, Oddgeir ; Gjevestad, Jon G. O. ; Jacobsen, Knut Stanley ; Andalsvik, Yngvild L.</creator><contributor>Radicella, Sandro M.</contributor><creatorcontrib>Ouassou, Mohammed ; Kristiansen, Oddgeir ; Gjevestad, Jon G. O. ; Jacobsen, Knut Stanley ; Andalsvik, Yngvild L. ; Radicella, Sandro M.</creatorcontrib><description>We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods.</description><identifier>ISSN: 1687-5990</identifier><identifier>EISSN: 1687-6008</identifier><identifier>DOI: 10.1155/2016/3582176</identifier><language>eng</language><publisher>New York: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Bias ; Criteria ; Datasets ; Filtration ; Fourier transformation ; Ionosphere ; Ionospherics ; Kernels ; Navigation ; Regression ; Satellites ; Scintillation ; Statistical analysis ; Stochastic models</subject><ispartof>International journal of navigation and observation, 2016, Vol.2016, p.1-18</ispartof><rights>Copyright © 2016 Mohammed Ouassou et al.</rights><rights>Copyright © 2016 Mohammed Ouassou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523</citedby><cites>FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523</cites><orcidid>0000-0001-9650-3910 ; 0000-0001-8573-633X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1812839743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1812839743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,25752,27922,27923,27924,37011,37012,44589,74897</link.rule.ids></links><search><contributor>Radicella, Sandro M.</contributor><creatorcontrib>Ouassou, Mohammed</creatorcontrib><creatorcontrib>Kristiansen, Oddgeir</creatorcontrib><creatorcontrib>Gjevestad, Jon G. O.</creatorcontrib><creatorcontrib>Jacobsen, Knut Stanley</creatorcontrib><creatorcontrib>Andalsvik, Yngvild L.</creatorcontrib><title>Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods</title><title>International journal of navigation and observation</title><description>We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Criteria</subject><subject>Datasets</subject><subject>Filtration</subject><subject>Fourier transformation</subject><subject>Ionosphere</subject><subject>Ionospherics</subject><subject>Kernels</subject><subject>Navigation</subject><subject>Regression</subject><subject>Satellites</subject><subject>Scintillation</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><issn>1687-5990</issn><issn>1687-6008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqN0U1PwyAYB3BiNHFOb34AEi8mWgelvNTbXKYuTk18udowoI6lKxU6jd9emu7kwXiCwI8nz8MfgGOMLjCmdJQizEaEihRztgMGmAmeMITE7nZP8xztg4MQVgixFGV8AN6mobVr2VpXQ1fCZ2Xr1lZVfzCrtVUmXMIxfHCfpoLjpvFOqiW8ksFoGMncKVnBO-PreP1k3r0JoXt6b9ql0-EQ7JWyCuZouw7B6_X0ZXKbzB9vZpPxPJFEUJawBacoxVjz0iiGWa6I1GKRcyk155SoLMUi40hKZLTkjJcLrEuGlORUI5qSITjt68b-PjYmtMXaBmXiILVxm1BgQSnhlNHsH5RwkpGMdVVPftGV2_g6DhIVTgXJeUaiOu-V8i4Eb8qi8fFL_XeBUdHlUnS5FNtcIj_r-dLWWn7Zv_UPP4uKzw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Ouassou, Mohammed</creator><creator>Kristiansen, Oddgeir</creator><creator>Gjevestad, Jon G. O.</creator><creator>Jacobsen, Knut Stanley</creator><creator>Andalsvik, Yngvild L.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9650-3910</orcidid><orcidid>https://orcid.org/0000-0001-8573-633X</orcidid></search><sort><creationdate>2016</creationdate><title>Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods</title><author>Ouassou, Mohammed ; Kristiansen, Oddgeir ; Gjevestad, Jon G. O. ; Jacobsen, Knut Stanley ; Andalsvik, Yngvild L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Criteria</topic><topic>Datasets</topic><topic>Filtration</topic><topic>Fourier transformation</topic><topic>Ionosphere</topic><topic>Ionospherics</topic><topic>Kernels</topic><topic>Navigation</topic><topic>Regression</topic><topic>Satellites</topic><topic>Scintillation</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouassou, Mohammed</creatorcontrib><creatorcontrib>Kristiansen, Oddgeir</creatorcontrib><creatorcontrib>Gjevestad, Jon G. O.</creatorcontrib><creatorcontrib>Jacobsen, Knut Stanley</creatorcontrib><creatorcontrib>Andalsvik, Yngvild L.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of navigation and observation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouassou, Mohammed</au><au>Kristiansen, Oddgeir</au><au>Gjevestad, Jon G. O.</au><au>Jacobsen, Knut Stanley</au><au>Andalsvik, Yngvild L.</au><au>Radicella, Sandro M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods</atitle><jtitle>International journal of navigation and observation</jtitle><date>2016</date><risdate>2016</risdate><volume>2016</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1687-5990</issn><eissn>1687-6008</eissn><abstract>We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods.</abstract><cop>New York</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/3582176</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9650-3910</orcidid><orcidid>https://orcid.org/0000-0001-8573-633X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5990
ispartof International journal of navigation and observation, 2016, Vol.2016, p.1-18
issn 1687-5990
1687-6008
language eng
recordid cdi_proquest_miscellaneous_1855375654
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Bias
Criteria
Datasets
Filtration
Fourier transformation
Ionosphere
Ionospherics
Kernels
Navigation
Regression
Satellites
Scintillation
Statistical analysis
Stochastic models
title Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Scintillation%20Indices:%20A%20Novel%20Approach%20Based%20on%20Local%20Kernel%20Regression%20Methods&rft.jtitle=International%20journal%20of%20navigation%20and%20observation&rft.au=Ouassou,%20Mohammed&rft.date=2016&rft.volume=2016&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1687-5990&rft.eissn=1687-6008&rft_id=info:doi/10.1155/2016/3582176&rft_dat=%3Cproquest_cross%3E1855375654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812839743&rft_id=info:pmid/&rfr_iscdi=true