Loading…
Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods
We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regres...
Saved in:
Published in: | International journal of navigation and observation 2016, Vol.2016, p.1-18 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523 |
---|---|
cites | cdi_FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523 |
container_end_page | 18 |
container_issue | |
container_start_page | 1 |
container_title | International journal of navigation and observation |
container_volume | 2016 |
creator | Ouassou, Mohammed Kristiansen, Oddgeir Gjevestad, Jon G. O. Jacobsen, Knut Stanley Andalsvik, Yngvild L. |
description | We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods. |
doi_str_mv | 10.1155/2016/3582176 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855375654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855375654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523</originalsourceid><addsrcrecordid>eNqN0U1PwyAYB3BiNHFOb34AEi8mWgelvNTbXKYuTk18udowoI6lKxU6jd9emu7kwXiCwI8nz8MfgGOMLjCmdJQizEaEihRztgMGmAmeMITE7nZP8xztg4MQVgixFGV8AN6mobVr2VpXQ1fCZ2Xr1lZVfzCrtVUmXMIxfHCfpoLjpvFOqiW8ksFoGMncKVnBO-PreP1k3r0JoXt6b9ql0-EQ7JWyCuZouw7B6_X0ZXKbzB9vZpPxPJFEUJawBacoxVjz0iiGWa6I1GKRcyk155SoLMUi40hKZLTkjJcLrEuGlORUI5qSITjt68b-PjYmtMXaBmXiILVxm1BgQSnhlNHsH5RwkpGMdVVPftGV2_g6DhIVTgXJeUaiOu-V8i4Eb8qi8fFL_XeBUdHlUnS5FNtcIj_r-dLWWn7Zv_UPP4uKzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812839743</pqid></control><display><type>article</type><title>Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ouassou, Mohammed ; Kristiansen, Oddgeir ; Gjevestad, Jon G. O. ; Jacobsen, Knut Stanley ; Andalsvik, Yngvild L.</creator><contributor>Radicella, Sandro M.</contributor><creatorcontrib>Ouassou, Mohammed ; Kristiansen, Oddgeir ; Gjevestad, Jon G. O. ; Jacobsen, Knut Stanley ; Andalsvik, Yngvild L. ; Radicella, Sandro M.</creatorcontrib><description>We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods.</description><identifier>ISSN: 1687-5990</identifier><identifier>EISSN: 1687-6008</identifier><identifier>DOI: 10.1155/2016/3582176</identifier><language>eng</language><publisher>New York: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Bias ; Criteria ; Datasets ; Filtration ; Fourier transformation ; Ionosphere ; Ionospherics ; Kernels ; Navigation ; Regression ; Satellites ; Scintillation ; Statistical analysis ; Stochastic models</subject><ispartof>International journal of navigation and observation, 2016, Vol.2016, p.1-18</ispartof><rights>Copyright © 2016 Mohammed Ouassou et al.</rights><rights>Copyright © 2016 Mohammed Ouassou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523</citedby><cites>FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523</cites><orcidid>0000-0001-9650-3910 ; 0000-0001-8573-633X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1812839743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1812839743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,25752,27922,27923,27924,37011,37012,44589,74897</link.rule.ids></links><search><contributor>Radicella, Sandro M.</contributor><creatorcontrib>Ouassou, Mohammed</creatorcontrib><creatorcontrib>Kristiansen, Oddgeir</creatorcontrib><creatorcontrib>Gjevestad, Jon G. O.</creatorcontrib><creatorcontrib>Jacobsen, Knut Stanley</creatorcontrib><creatorcontrib>Andalsvik, Yngvild L.</creatorcontrib><title>Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods</title><title>International journal of navigation and observation</title><description>We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Criteria</subject><subject>Datasets</subject><subject>Filtration</subject><subject>Fourier transformation</subject><subject>Ionosphere</subject><subject>Ionospherics</subject><subject>Kernels</subject><subject>Navigation</subject><subject>Regression</subject><subject>Satellites</subject><subject>Scintillation</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><issn>1687-5990</issn><issn>1687-6008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqN0U1PwyAYB3BiNHFOb34AEi8mWgelvNTbXKYuTk18udowoI6lKxU6jd9emu7kwXiCwI8nz8MfgGOMLjCmdJQizEaEihRztgMGmAmeMITE7nZP8xztg4MQVgixFGV8AN6mobVr2VpXQ1fCZ2Xr1lZVfzCrtVUmXMIxfHCfpoLjpvFOqiW8ksFoGMncKVnBO-PreP1k3r0JoXt6b9ql0-EQ7JWyCuZouw7B6_X0ZXKbzB9vZpPxPJFEUJawBacoxVjz0iiGWa6I1GKRcyk155SoLMUi40hKZLTkjJcLrEuGlORUI5qSITjt68b-PjYmtMXaBmXiILVxm1BgQSnhlNHsH5RwkpGMdVVPftGV2_g6DhIVTgXJeUaiOu-V8i4Eb8qi8fFL_XeBUdHlUnS5FNtcIj_r-dLWWn7Zv_UPP4uKzw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Ouassou, Mohammed</creator><creator>Kristiansen, Oddgeir</creator><creator>Gjevestad, Jon G. O.</creator><creator>Jacobsen, Knut Stanley</creator><creator>Andalsvik, Yngvild L.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9650-3910</orcidid><orcidid>https://orcid.org/0000-0001-8573-633X</orcidid></search><sort><creationdate>2016</creationdate><title>Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods</title><author>Ouassou, Mohammed ; Kristiansen, Oddgeir ; Gjevestad, Jon G. O. ; Jacobsen, Knut Stanley ; Andalsvik, Yngvild L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Criteria</topic><topic>Datasets</topic><topic>Filtration</topic><topic>Fourier transformation</topic><topic>Ionosphere</topic><topic>Ionospherics</topic><topic>Kernels</topic><topic>Navigation</topic><topic>Regression</topic><topic>Satellites</topic><topic>Scintillation</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouassou, Mohammed</creatorcontrib><creatorcontrib>Kristiansen, Oddgeir</creatorcontrib><creatorcontrib>Gjevestad, Jon G. O.</creatorcontrib><creatorcontrib>Jacobsen, Knut Stanley</creatorcontrib><creatorcontrib>Andalsvik, Yngvild L.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of navigation and observation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouassou, Mohammed</au><au>Kristiansen, Oddgeir</au><au>Gjevestad, Jon G. O.</au><au>Jacobsen, Knut Stanley</au><au>Andalsvik, Yngvild L.</au><au>Radicella, Sandro M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods</atitle><jtitle>International journal of navigation and observation</jtitle><date>2016</date><risdate>2016</risdate><volume>2016</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1687-5990</issn><eissn>1687-6008</eissn><abstract>We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods.</abstract><cop>New York</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/3582176</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9650-3910</orcidid><orcidid>https://orcid.org/0000-0001-8573-633X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5990 |
ispartof | International journal of navigation and observation, 2016, Vol.2016, p.1-18 |
issn | 1687-5990 1687-6008 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855375654 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Bias Criteria Datasets Filtration Fourier transformation Ionosphere Ionospherics Kernels Navigation Regression Satellites Scintillation Statistical analysis Stochastic models |
title | Estimation of Scintillation Indices: A Novel Approach Based on Local Kernel Regression Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Scintillation%20Indices:%20A%20Novel%20Approach%20Based%20on%20Local%20Kernel%20Regression%20Methods&rft.jtitle=International%20journal%20of%20navigation%20and%20observation&rft.au=Ouassou,%20Mohammed&rft.date=2016&rft.volume=2016&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1687-5990&rft.eissn=1687-6008&rft_id=info:doi/10.1155/2016/3582176&rft_dat=%3Cproquest_cross%3E1855375654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3856-6b750211d7fec6169c3ad8b97aad7753c4218470aa0eda767fb1df60ca75d0523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812839743&rft_id=info:pmid/&rfr_iscdi=true |