Loading…
A novel procedure for fabricating flexible screen-printed electrodes with improved electrochemical performance
Screen-printed electrodes (SPEs) with improved electrochemical performance were fabricated in this study. The SPEs on hydrophilic surface of polyethylene ethylene terephthalate (PET) film showed better electrochemical behaviour than that on hydrophobic surface. The optimal condition of pretreating f...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2016-07, Vol.137 (1), p.12060-12066 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Screen-printed electrodes (SPEs) with improved electrochemical performance were fabricated in this study. The SPEs on hydrophilic surface of polyethylene ethylene terephthalate (PET) film showed better electrochemical behaviour than that on hydrophobic surface. The optimal condition of pretreating fresh SPEs was that alternately dealt with chemical treatment (soaked in 3M NaOH solutions for 1h) and high temperature curing (heated at 120 °C for 15 min) for two times. After chemical treatment, the electrochemical performance of self-made SPEs was better than the commercial three electrodes system. By analyzing cyclic voltammetry (CV) curves, we found that the oxidation peak currents and peak to peak separation reached 407.65 μA and 111.16 mV, which mean the sensitivity and electron transfer rate improved 1.9 times and 3.8 times compared with fresh SPEs, and 2 times and 3 times compared with commercial DropSens (DS) electrodes. The obtained SPEs were stable, convenient and inexpensive, which could be extensively applied for developing novel electrochemical sensors. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/137/1/012060 |