Loading…
Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures
The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maxim...
Saved in:
Published in: | IEEE transactions on reliability 2016-09, Vol.65 (3), p.1522-1535 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3 |
container_end_page | 1535 |
container_issue | 3 |
container_start_page | 1522 |
container_title | IEEE transactions on reliability |
container_volume | 65 |
creator | Ranjan, Rakesh Upadhyay, S. K. |
description | The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maximization algorithm for obtaining maximum likelihood estimates of model parameters. This incomplete specification of the data simultaneously explores the possibility of sampling importance resampling strategy with intermediate Markov chain Monte Carlo steps for the Bayesian estimation of parameters. Although this paper focuses primarily on estimation of model parameters, other inferential developments can be routinely done. Numerical illustration is provided based on both simulated and real-data examples. |
doi_str_mv | 10.1109/TR.2016.2575439 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855386647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7524036</ieee_id><sourcerecordid>1855386647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEUpeWcw9cLHHhkq0_4sQ-wmpbkFoVrZZzNLHH4JLYi51I7ZH_HK92xYHTaKTfezN6r6quGV0zRvXNfrfmlLVrLjvZCP2qWjEpVc06zl5XK0qZqrXk-qJ6m_NTWZtGq1X1ZzNCzt7ASCBY8hleMHsIZJtnP8HsYyAuJjL_RPINEkw4Y8okOgJkE6cDzj78IDuff5GHaHEsBhktKaoHH_y0TEd0-3yIAcPsz0fuYJqA3IIfl4T5qnrjYMz47jwvq--32_3mS33_ePd18-m-NoLzuXbSCTUYKY2j3CI2Wnat5ti2zeC4GIxFUANrAayzhjcCQStlGzoYwywacVl9PPkeUvy9YJ77yWeD4wgB45J7pqQUqth1Bf3wH_oUlxTKd4USVOlOK12omxNlUsw5oesPqWSWXnpG-2Ml_X7XHyvpz5UUxfuTwiPiP7qTvKGiFX8BJwOI7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830897989</pqid></control><display><type>article</type><title>Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ranjan, Rakesh ; Upadhyay, S. K.</creator><creatorcontrib>Ranjan, Rakesh ; Upadhyay, S. K.</creatorcontrib><description>The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maximization algorithm for obtaining maximum likelihood estimates of model parameters. This incomplete specification of the data simultaneously explores the possibility of sampling importance resampling strategy with intermediate Markov chain Monte Carlo steps for the Bayesian estimation of parameters. Although this paper focuses primarily on estimation of model parameters, other inferential developments can be routinely done. Numerical illustration is provided based on both simulated and real-data examples.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2016.2575439</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; Bayes methods ; Bayesian analysis ; Competing risk model ; Computer simulation ; Data models ; Estimation ; expectation maximization algorithm ; exponential model ; gamma model ; Hazards ; increasing hazard rate ; Mathematical models ; Maximization ; Numerical models ; Parameter estimation ; Parameters ; Reliability ; Risk ; sampling importance resampling ; Specifications</subject><ispartof>IEEE transactions on reliability, 2016-09, Vol.65 (3), p.1522-1535</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3</citedby><cites>FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7524036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ranjan, Rakesh</creatorcontrib><creatorcontrib>Upadhyay, S. K.</creatorcontrib><title>Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maximization algorithm for obtaining maximum likelihood estimates of model parameters. This incomplete specification of the data simultaneously explores the possibility of sampling importance resampling strategy with intermediate Markov chain Monte Carlo steps for the Bayesian estimation of parameters. Although this paper focuses primarily on estimation of model parameters, other inferential developments can be routinely done. Numerical illustration is provided based on both simulated and real-data examples.</description><subject>Aging</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Competing risk model</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Estimation</subject><subject>expectation maximization algorithm</subject><subject>exponential model</subject><subject>gamma model</subject><subject>Hazards</subject><subject>increasing hazard rate</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Reliability</subject><subject>Risk</subject><subject>sampling importance resampling</subject><subject>Specifications</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxSMEUpeWcw9cLHHhkq0_4sQ-wmpbkFoVrZZzNLHH4JLYi51I7ZH_HK92xYHTaKTfezN6r6quGV0zRvXNfrfmlLVrLjvZCP2qWjEpVc06zl5XK0qZqrXk-qJ6m_NTWZtGq1X1ZzNCzt7ASCBY8hleMHsIZJtnP8HsYyAuJjL_RPINEkw4Y8okOgJkE6cDzj78IDuff5GHaHEsBhktKaoHH_y0TEd0-3yIAcPsz0fuYJqA3IIfl4T5qnrjYMz47jwvq--32_3mS33_ePd18-m-NoLzuXbSCTUYKY2j3CI2Wnat5ti2zeC4GIxFUANrAayzhjcCQStlGzoYwywacVl9PPkeUvy9YJ77yWeD4wgB45J7pqQUqth1Bf3wH_oUlxTKd4USVOlOK12omxNlUsw5oesPqWSWXnpG-2Ml_X7XHyvpz5UUxfuTwiPiP7qTvKGiFX8BJwOI7w</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Ranjan, Rakesh</creator><creator>Upadhyay, S. K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201609</creationdate><title>Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures</title><author>Ranjan, Rakesh ; Upadhyay, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aging</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Competing risk model</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Estimation</topic><topic>expectation maximization algorithm</topic><topic>exponential model</topic><topic>gamma model</topic><topic>Hazards</topic><topic>increasing hazard rate</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Reliability</topic><topic>Risk</topic><topic>sampling importance resampling</topic><topic>Specifications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, Rakesh</creatorcontrib><creatorcontrib>Upadhyay, S. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjan, Rakesh</au><au>Upadhyay, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2016-09</date><risdate>2016</risdate><volume>65</volume><issue>3</issue><spage>1522</spage><epage>1535</epage><pages>1522-1535</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maximization algorithm for obtaining maximum likelihood estimates of model parameters. This incomplete specification of the data simultaneously explores the possibility of sampling importance resampling strategy with intermediate Markov chain Monte Carlo steps for the Bayesian estimation of parameters. Although this paper focuses primarily on estimation of model parameters, other inferential developments can be routinely done. Numerical illustration is provided based on both simulated and real-data examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2016.2575439</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2016-09, Vol.65 (3), p.1522-1535 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855386647 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aging Bayes methods Bayesian analysis Competing risk model Computer simulation Data models Estimation expectation maximization algorithm exponential model gamma model Hazards increasing hazard rate Mathematical models Maximization Numerical models Parameter estimation Parameters Reliability Risk sampling importance resampling Specifications |
title | Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20and%20Bayesian%20Estimation%20for%20the%20Parameters%20of%20a%20Competing%20Risk%20Model%20Based%20on%20Minimum%20of%20Exponential%20and%20Gamma%20Failures&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Ranjan,%20Rakesh&rft.date=2016-09&rft.volume=65&rft.issue=3&rft.spage=1522&rft.epage=1535&rft.pages=1522-1535&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2016.2575439&rft_dat=%3Cproquest_cross%3E1855386647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830897989&rft_id=info:pmid/&rft_ieee_id=7524036&rfr_iscdi=true |