Loading…

Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures

The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maxim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on reliability 2016-09, Vol.65 (3), p.1522-1535
Main Authors: Ranjan, Rakesh, Upadhyay, S. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3
cites cdi_FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3
container_end_page 1535
container_issue 3
container_start_page 1522
container_title IEEE transactions on reliability
container_volume 65
creator Ranjan, Rakesh
Upadhyay, S. K.
description The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maximization algorithm for obtaining maximum likelihood estimates of model parameters. This incomplete specification of the data simultaneously explores the possibility of sampling importance resampling strategy with intermediate Markov chain Monte Carlo steps for the Bayesian estimation of parameters. Although this paper focuses primarily on estimation of model parameters, other inferential developments can be routinely done. Numerical illustration is provided based on both simulated and real-data examples.
doi_str_mv 10.1109/TR.2016.2575439
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855386647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7524036</ieee_id><sourcerecordid>1855386647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEUpeWcw9cLHHhkq0_4sQ-wmpbkFoVrZZzNLHH4JLYi51I7ZH_HK92xYHTaKTfezN6r6quGV0zRvXNfrfmlLVrLjvZCP2qWjEpVc06zl5XK0qZqrXk-qJ6m_NTWZtGq1X1ZzNCzt7ASCBY8hleMHsIZJtnP8HsYyAuJjL_RPINEkw4Y8okOgJkE6cDzj78IDuff5GHaHEsBhktKaoHH_y0TEd0-3yIAcPsz0fuYJqA3IIfl4T5qnrjYMz47jwvq--32_3mS33_ePd18-m-NoLzuXbSCTUYKY2j3CI2Wnat5ti2zeC4GIxFUANrAayzhjcCQStlGzoYwywacVl9PPkeUvy9YJ77yWeD4wgB45J7pqQUqth1Bf3wH_oUlxTKd4USVOlOK12omxNlUsw5oesPqWSWXnpG-2Ml_X7XHyvpz5UUxfuTwiPiP7qTvKGiFX8BJwOI7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830897989</pqid></control><display><type>article</type><title>Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ranjan, Rakesh ; Upadhyay, S. K.</creator><creatorcontrib>Ranjan, Rakesh ; Upadhyay, S. K.</creatorcontrib><description>The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maximization algorithm for obtaining maximum likelihood estimates of model parameters. This incomplete specification of the data simultaneously explores the possibility of sampling importance resampling strategy with intermediate Markov chain Monte Carlo steps for the Bayesian estimation of parameters. Although this paper focuses primarily on estimation of model parameters, other inferential developments can be routinely done. Numerical illustration is provided based on both simulated and real-data examples.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2016.2575439</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; Bayes methods ; Bayesian analysis ; Competing risk model ; Computer simulation ; Data models ; Estimation ; expectation maximization algorithm ; exponential model ; gamma model ; Hazards ; increasing hazard rate ; Mathematical models ; Maximization ; Numerical models ; Parameter estimation ; Parameters ; Reliability ; Risk ; sampling importance resampling ; Specifications</subject><ispartof>IEEE transactions on reliability, 2016-09, Vol.65 (3), p.1522-1535</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3</citedby><cites>FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7524036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ranjan, Rakesh</creatorcontrib><creatorcontrib>Upadhyay, S. K.</creatorcontrib><title>Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maximization algorithm for obtaining maximum likelihood estimates of model parameters. This incomplete specification of the data simultaneously explores the possibility of sampling importance resampling strategy with intermediate Markov chain Monte Carlo steps for the Bayesian estimation of parameters. Although this paper focuses primarily on estimation of model parameters, other inferential developments can be routinely done. Numerical illustration is provided based on both simulated and real-data examples.</description><subject>Aging</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Competing risk model</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Estimation</subject><subject>expectation maximization algorithm</subject><subject>exponential model</subject><subject>gamma model</subject><subject>Hazards</subject><subject>increasing hazard rate</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Reliability</subject><subject>Risk</subject><subject>sampling importance resampling</subject><subject>Specifications</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxSMEUpeWcw9cLHHhkq0_4sQ-wmpbkFoVrZZzNLHH4JLYi51I7ZH_HK92xYHTaKTfezN6r6quGV0zRvXNfrfmlLVrLjvZCP2qWjEpVc06zl5XK0qZqrXk-qJ6m_NTWZtGq1X1ZzNCzt7ASCBY8hleMHsIZJtnP8HsYyAuJjL_RPINEkw4Y8okOgJkE6cDzj78IDuff5GHaHEsBhktKaoHH_y0TEd0-3yIAcPsz0fuYJqA3IIfl4T5qnrjYMz47jwvq--32_3mS33_ePd18-m-NoLzuXbSCTUYKY2j3CI2Wnat5ti2zeC4GIxFUANrAayzhjcCQStlGzoYwywacVl9PPkeUvy9YJ77yWeD4wgB45J7pqQUqth1Bf3wH_oUlxTKd4USVOlOK12omxNlUsw5oesPqWSWXnpG-2Ml_X7XHyvpz5UUxfuTwiPiP7qTvKGiFX8BJwOI7w</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Ranjan, Rakesh</creator><creator>Upadhyay, S. K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201609</creationdate><title>Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures</title><author>Ranjan, Rakesh ; Upadhyay, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aging</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Competing risk model</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Estimation</topic><topic>expectation maximization algorithm</topic><topic>exponential model</topic><topic>gamma model</topic><topic>Hazards</topic><topic>increasing hazard rate</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Reliability</topic><topic>Risk</topic><topic>sampling importance resampling</topic><topic>Specifications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, Rakesh</creatorcontrib><creatorcontrib>Upadhyay, S. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjan, Rakesh</au><au>Upadhyay, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2016-09</date><risdate>2016</risdate><volume>65</volume><issue>3</issue><spage>1522</spage><epage>1535</epage><pages>1522-1535</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The paper provides both classical and Bayesian estimation of the parameters of a competing risk model defined on the basis of minimum of exponential and gamma failure modes. Usually such situations are the examples of incomplete specification of data that naturally opens the way to expectation maximization algorithm for obtaining maximum likelihood estimates of model parameters. This incomplete specification of the data simultaneously explores the possibility of sampling importance resampling strategy with intermediate Markov chain Monte Carlo steps for the Bayesian estimation of parameters. Although this paper focuses primarily on estimation of model parameters, other inferential developments can be routinely done. Numerical illustration is provided based on both simulated and real-data examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2016.2575439</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2016-09, Vol.65 (3), p.1522-1535
issn 0018-9529
1558-1721
language eng
recordid cdi_proquest_miscellaneous_1855386647
source IEEE Electronic Library (IEL) Journals
subjects Aging
Bayes methods
Bayesian analysis
Competing risk model
Computer simulation
Data models
Estimation
expectation maximization algorithm
exponential model
gamma model
Hazards
increasing hazard rate
Mathematical models
Maximization
Numerical models
Parameter estimation
Parameters
Reliability
Risk
sampling importance resampling
Specifications
title Classical and Bayesian Estimation for the Parameters of a Competing Risk Model Based on Minimum of Exponential and Gamma Failures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20and%20Bayesian%20Estimation%20for%20the%20Parameters%20of%20a%20Competing%20Risk%20Model%20Based%20on%20Minimum%20of%20Exponential%20and%20Gamma%20Failures&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Ranjan,%20Rakesh&rft.date=2016-09&rft.volume=65&rft.issue=3&rft.spage=1522&rft.epage=1535&rft.pages=1522-1535&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2016.2575439&rft_dat=%3Cproquest_cross%3E1855386647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-f5f38bc55cf02dee4957692e664bf23bcdea8b16aadfdc243ea988d40bcc1dec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830897989&rft_id=info:pmid/&rft_ieee_id=7524036&rfr_iscdi=true