Loading…

Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE

This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation s...

Full description

Saved in:
Bibliographic Details
Published in:Monthly weather review 2016-09, Vol.144 (9), p.3159-3180
Main Authors: Cintineo, Rebecca M, Otkin, Jason A, Jones, Thomas A, Koch, Steven, Stensrud, David J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313
cites cdi_FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313
container_end_page 3180
container_issue 9
container_start_page 3159
container_title Monthly weather review
container_volume 144
creator Cintineo, Rebecca M
Otkin, Jason A
Jones, Thomas A
Koch, Steven
Stensrud, David J
description This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation system. A high-resolution truth simulation was used to create synthetic radar and satellite observations of a severe weather event that occurred across the U.S. central plains on 4–5 June 2005. The experiment employs the Weather Research and Forecasting Model at 4-km horizontal grid spacing and the ensemble adjustment Kalman filter algorithm in the Data Assimilation Research Testbed system. The ability of GOES-R ABI brightness temperatures to improve the analysis and forecast accuracy when assimilated separately or simultaneously with Doppler radar reflectivity and radial velocity observations was assessed, along with the use of bias correction and different covariance localization radii for the brightness temperatures. Results show that the radar observations accurately capture the structure of a portion of the storm complex by the end of the assimilation period, but that more of the storms and atmospheric features are reproduced and the accuracy of the ensuing forecast improved when the brightness temperatures are also assimilated.
doi_str_mv 10.1175/MWR-D-15-0366.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855396606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827711338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313</originalsourceid><addsrcrecordid>eNqN0UFv1DAQBWALgcRSOHO1xIWLW48ndpzjtru0K7VaKSnq0XKcCU2VTRY7QeqF307acuKAeprLN280eox9BnkKkOuzm7tSbARoIdGYU3jDVqCVFDIr8C1bSalyIU2WvWcfUnqQUhqTqRX7vU6pO3S9n7px4GPLq8dhuqepC_xyv61EydfnO74b2ugjNfw8dj_up4FS4rd0OFL00xwpcT80_K4qhbUbXvrGR76vE8Vfz7GJdwP3_GpZFSWlsZ-fj-2ravuRvWt9n-jT33nCvn_b3l5ciev95e5ifS1ClstJIGlrdGhIGyTlNVKt2wbJhtoi1ga8bYFQBttA4UNhFVplAsm8VqpAwBP29SX3GMefM6XJHboUqO_9QOOcHFitsTBGmlfQzGQgZYEL_fIPfRjnOCyPOGVVngMg2v8psGhsjirTizp7USGOKUVq3TF2Bx8fHUj3VLBbCnYbB9o9FewA_wBsWJYV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836873245</pqid></control><display><type>article</type><title>Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE</title><source>EZB Electronic Journals Library</source><creator>Cintineo, Rebecca M ; Otkin, Jason A ; Jones, Thomas A ; Koch, Steven ; Stensrud, David J</creator><creatorcontrib>Cintineo, Rebecca M ; Otkin, Jason A ; Jones, Thomas A ; Koch, Steven ; Stensrud, David J</creatorcontrib><description>This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation system. A high-resolution truth simulation was used to create synthetic radar and satellite observations of a severe weather event that occurred across the U.S. central plains on 4–5 June 2005. The experiment employs the Weather Research and Forecasting Model at 4-km horizontal grid spacing and the ensemble adjustment Kalman filter algorithm in the Data Assimilation Research Testbed system. The ability of GOES-R ABI brightness temperatures to improve the analysis and forecast accuracy when assimilated separately or simultaneously with Doppler radar reflectivity and radial velocity observations was assessed, along with the use of bias correction and different covariance localization radii for the brightness temperatures. Results show that the radar observations accurately capture the structure of a portion of the storm complex by the end of the assimilation period, but that more of the storms and atmospheric features are reproduced and the accuracy of the ensuing forecast improved when the brightness temperatures are also assimilated.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-15-0366.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Accuracy ; Algorithms ; Brightness ; Brightness temperature ; Climatology ; Clouds ; Data assimilation ; Data collection ; Doppler radar ; Doppler sonar ; Forecast accuracy ; High resolution ; Kalman filters ; Localization ; Mathematical models ; Meteorological satellites ; Radar ; Radar reflectivity ; Radial velocity ; Reflectance ; Satellite observation ; Satellites ; Sensors ; Severe weather ; Simulation ; Storms ; Studies ; Surveillance radar ; Temperature ; Velocity ; Weather ; Weather forecasting</subject><ispartof>Monthly weather review, 2016-09, Vol.144 (9), p.3159-3180</ispartof><rights>Copyright American Meteorological Society Sep 2016</rights><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313</citedby><cites>FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cintineo, Rebecca M</creatorcontrib><creatorcontrib>Otkin, Jason A</creatorcontrib><creatorcontrib>Jones, Thomas A</creatorcontrib><creatorcontrib>Koch, Steven</creatorcontrib><creatorcontrib>Stensrud, David J</creatorcontrib><title>Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE</title><title>Monthly weather review</title><description>This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation system. A high-resolution truth simulation was used to create synthetic radar and satellite observations of a severe weather event that occurred across the U.S. central plains on 4–5 June 2005. The experiment employs the Weather Research and Forecasting Model at 4-km horizontal grid spacing and the ensemble adjustment Kalman filter algorithm in the Data Assimilation Research Testbed system. The ability of GOES-R ABI brightness temperatures to improve the analysis and forecast accuracy when assimilated separately or simultaneously with Doppler radar reflectivity and radial velocity observations was assessed, along with the use of bias correction and different covariance localization radii for the brightness temperatures. Results show that the radar observations accurately capture the structure of a portion of the storm complex by the end of the assimilation period, but that more of the storms and atmospheric features are reproduced and the accuracy of the ensuing forecast improved when the brightness temperatures are also assimilated.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Climatology</subject><subject>Clouds</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Doppler radar</subject><subject>Doppler sonar</subject><subject>Forecast accuracy</subject><subject>High resolution</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Radar</subject><subject>Radar reflectivity</subject><subject>Radial velocity</subject><subject>Reflectance</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Severe weather</subject><subject>Simulation</subject><subject>Storms</subject><subject>Studies</subject><subject>Surveillance radar</subject><subject>Temperature</subject><subject>Velocity</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UFv1DAQBWALgcRSOHO1xIWLW48ndpzjtru0K7VaKSnq0XKcCU2VTRY7QeqF307acuKAeprLN280eox9BnkKkOuzm7tSbARoIdGYU3jDVqCVFDIr8C1bSalyIU2WvWcfUnqQUhqTqRX7vU6pO3S9n7px4GPLq8dhuqepC_xyv61EydfnO74b2ugjNfw8dj_up4FS4rd0OFL00xwpcT80_K4qhbUbXvrGR76vE8Vfz7GJdwP3_GpZFSWlsZ-fj-2ravuRvWt9n-jT33nCvn_b3l5ciev95e5ifS1ClstJIGlrdGhIGyTlNVKt2wbJhtoi1ga8bYFQBttA4UNhFVplAsm8VqpAwBP29SX3GMefM6XJHboUqO_9QOOcHFitsTBGmlfQzGQgZYEL_fIPfRjnOCyPOGVVngMg2v8psGhsjirTizp7USGOKUVq3TF2Bx8fHUj3VLBbCnYbB9o9FewA_wBsWJYV</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Cintineo, Rebecca M</creator><creator>Otkin, Jason A</creator><creator>Jones, Thomas A</creator><creator>Koch, Steven</creator><creator>Stensrud, David J</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160901</creationdate><title>Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE</title><author>Cintineo, Rebecca M ; Otkin, Jason A ; Jones, Thomas A ; Koch, Steven ; Stensrud, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Climatology</topic><topic>Clouds</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Doppler radar</topic><topic>Doppler sonar</topic><topic>Forecast accuracy</topic><topic>High resolution</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Radar</topic><topic>Radar reflectivity</topic><topic>Radial velocity</topic><topic>Reflectance</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Severe weather</topic><topic>Simulation</topic><topic>Storms</topic><topic>Studies</topic><topic>Surveillance radar</topic><topic>Temperature</topic><topic>Velocity</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cintineo, Rebecca M</creatorcontrib><creatorcontrib>Otkin, Jason A</creatorcontrib><creatorcontrib>Jones, Thomas A</creatorcontrib><creatorcontrib>Koch, Steven</creatorcontrib><creatorcontrib>Stensrud, David J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cintineo, Rebecca M</au><au>Otkin, Jason A</au><au>Jones, Thomas A</au><au>Koch, Steven</au><au>Stensrud, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE</atitle><jtitle>Monthly weather review</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>144</volume><issue>9</issue><spage>3159</spage><epage>3180</epage><pages>3159-3180</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation system. A high-resolution truth simulation was used to create synthetic radar and satellite observations of a severe weather event that occurred across the U.S. central plains on 4–5 June 2005. The experiment employs the Weather Research and Forecasting Model at 4-km horizontal grid spacing and the ensemble adjustment Kalman filter algorithm in the Data Assimilation Research Testbed system. The ability of GOES-R ABI brightness temperatures to improve the analysis and forecast accuracy when assimilated separately or simultaneously with Doppler radar reflectivity and radial velocity observations was assessed, along with the use of bias correction and different covariance localization radii for the brightness temperatures. Results show that the radar observations accurately capture the structure of a portion of the storm complex by the end of the assimilation period, but that more of the storms and atmospheric features are reproduced and the accuracy of the ensuing forecast improved when the brightness temperatures are also assimilated.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-15-0366.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2016-09, Vol.144 (9), p.3159-3180
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_miscellaneous_1855396606
source EZB Electronic Journals Library
subjects Accuracy
Algorithms
Brightness
Brightness temperature
Climatology
Clouds
Data assimilation
Data collection
Doppler radar
Doppler sonar
Forecast accuracy
High resolution
Kalman filters
Localization
Mathematical models
Meteorological satellites
Radar
Radar reflectivity
Radial velocity
Reflectance
Satellite observation
Satellites
Sensors
Severe weather
Simulation
Storms
Studies
Surveillance radar
Temperature
Velocity
Weather
Weather forecasting
title Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assimilation%20of%20Synthetic%20GOES-R%20ABI%20Infrared%20Brightness%20Temperatures%20and%20WSR-88D%20Radar%20Observations%20in%20a%20High-Resolution%20OSSE&rft.jtitle=Monthly%20weather%20review&rft.au=Cintineo,%20Rebecca%20M&rft.date=2016-09-01&rft.volume=144&rft.issue=9&rft.spage=3159&rft.epage=3180&rft.pages=3159-3180&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/MWR-D-15-0366.1&rft_dat=%3Cproquest_cross%3E2827711338%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836873245&rft_id=info:pmid/&rfr_iscdi=true