Loading…

Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems

This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantizati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2017-02, Vol.28 (2), p.294-307
Main Authors: Guanyu Lai, Zhi Liu, Yun Zhang, Chen, Chun Lung Philip, Shengli Xie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353
cites cdi_FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353
container_end_page 307
container_issue 2
container_start_page 294
container_title IEEE transaction on neural networks and learning systems
container_volume 28
creator Guanyu Lai
Zhi Liu
Yun Zhang
Chen, Chun Lung Philip
Shengli Xie
description This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantization effect and nonsmooth backlash nonlinearity. To resolve this challenge, this paper presents a two-stage separation approach established on two new technical components, which are the approximate asymmetric backlash model and the nonlinear decomposition of quantizer, respectively. Then the real control is successfully separated from the coupling dynamics. Furthermore, by employing the neural networks and adaptation method in control design, a quantized controller is developed to guarantee the asymptotic convergence of tracking error to an adjustable region of zero and uniform ultimate boundedness of all closed-loop signals. Eventually, simulations are conducted to support our theoretical results.
doi_str_mv 10.1109/TNNLS.2015.2506267
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1856596437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7365477</ieee_id><sourcerecordid>2174451817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353</originalsourceid><addsrcrecordid>eNpd0VuLEzEUB_Agirus-wUUJOCLL625TC7zWIs3KBXZCr6FNHMGszuTjElGqZ_e1NY-mJeEk985hPwRek7JklLSvtltt5u7JSNULJkgkkn1CF0zKtmCca0fX87q2xW6zfme1CWJkE37FF0xTYRoKb9G0yofxhFK8g6vXJltiQm_te5hsPk7XsdxgpBt8TFgH_CX2Ybif0OHV52div8JlYSS4oBjj78GB6nY6rZQfsX0UN02hsEHsAnfHXKBMT9DT3o7ZLg97zdo9_7dbv1xsfn84dN6tVk4LmhZqE7xllGnCemJtE3P9pRLSzRtyN7yWtS90lxwpvYcJKcCrNO9IE6prpZv0OvT2CnFHzPkYkafHQyDDRDnbKgWUrSy4arSV__R-zinUB9nGFVNI6imR8VOyqWYc4LeTMmPNh0MJeaYiPmbiDkmYs6J1KaX59HzfoTu0vLv_yt4cQIeAC7XikvRKMX_AP02j48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174451817</pqid></control><display><type>article</type><title>Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Guanyu Lai ; Zhi Liu ; Yun Zhang ; Chen, Chun Lung Philip ; Shengli Xie</creator><creatorcontrib>Guanyu Lai ; Zhi Liu ; Yun Zhang ; Chen, Chun Lung Philip ; Shengli Xie</creatorcontrib><description>This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantization effect and nonsmooth backlash nonlinearity. To resolve this challenge, this paper presents a two-stage separation approach established on two new technical components, which are the approximate asymmetric backlash model and the nonlinear decomposition of quantizer, respectively. Then the real control is successfully separated from the coupling dynamics. Furthermore, by employing the neural networks and adaptation method in control design, a quantized controller is developed to guarantee the asymptotic convergence of tracking error to an adjustable region of zero and uniform ultimate boundedness of all closed-loop signals. Eventually, simulations are conducted to support our theoretical results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2506267</identifier><identifier>PMID: 28055913</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuator backlash ; Actuators ; Adaptive control ; adaptive quantized control ; Artificial neural networks ; Asymmetry ; Computer simulation ; Control systems design ; Coupling ; Lyapunov function ; Neural networks ; neural networks (NNs) ; Nonlinear control ; Nonlinear systems ; Nonlinearity ; Quantization (signal) ; Stage separation ; Tracking errors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2017-02, Vol.28 (2), p.294-307</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353</citedby><cites>FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7365477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28055913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guanyu Lai</creatorcontrib><creatorcontrib>Zhi Liu</creatorcontrib><creatorcontrib>Yun Zhang</creatorcontrib><creatorcontrib>Chen, Chun Lung Philip</creatorcontrib><creatorcontrib>Shengli Xie</creatorcontrib><title>Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantization effect and nonsmooth backlash nonlinearity. To resolve this challenge, this paper presents a two-stage separation approach established on two new technical components, which are the approximate asymmetric backlash model and the nonlinear decomposition of quantizer, respectively. Then the real control is successfully separated from the coupling dynamics. Furthermore, by employing the neural networks and adaptation method in control design, a quantized controller is developed to guarantee the asymptotic convergence of tracking error to an adjustable region of zero and uniform ultimate boundedness of all closed-loop signals. Eventually, simulations are conducted to support our theoretical results.</description><subject>Actuator backlash</subject><subject>Actuators</subject><subject>Adaptive control</subject><subject>adaptive quantized control</subject><subject>Artificial neural networks</subject><subject>Asymmetry</subject><subject>Computer simulation</subject><subject>Control systems design</subject><subject>Coupling</subject><subject>Lyapunov function</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Quantization (signal)</subject><subject>Stage separation</subject><subject>Tracking errors</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpd0VuLEzEUB_Agirus-wUUJOCLL625TC7zWIs3KBXZCr6FNHMGszuTjElGqZ_e1NY-mJeEk985hPwRek7JklLSvtltt5u7JSNULJkgkkn1CF0zKtmCca0fX87q2xW6zfme1CWJkE37FF0xTYRoKb9G0yofxhFK8g6vXJltiQm_te5hsPk7XsdxgpBt8TFgH_CX2Ybif0OHV52div8JlYSS4oBjj78GB6nY6rZQfsX0UN02hsEHsAnfHXKBMT9DT3o7ZLg97zdo9_7dbv1xsfn84dN6tVk4LmhZqE7xllGnCemJtE3P9pRLSzRtyN7yWtS90lxwpvYcJKcCrNO9IE6prpZv0OvT2CnFHzPkYkafHQyDDRDnbKgWUrSy4arSV__R-zinUB9nGFVNI6imR8VOyqWYc4LeTMmPNh0MJeaYiPmbiDkmYs6J1KaX59HzfoTu0vLv_yt4cQIeAC7XikvRKMX_AP02j48</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Guanyu Lai</creator><creator>Zhi Liu</creator><creator>Yun Zhang</creator><creator>Chen, Chun Lung Philip</creator><creator>Shengli Xie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170201</creationdate><title>Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems</title><author>Guanyu Lai ; Zhi Liu ; Yun Zhang ; Chen, Chun Lung Philip ; Shengli Xie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuator backlash</topic><topic>Actuators</topic><topic>Adaptive control</topic><topic>adaptive quantized control</topic><topic>Artificial neural networks</topic><topic>Asymmetry</topic><topic>Computer simulation</topic><topic>Control systems design</topic><topic>Coupling</topic><topic>Lyapunov function</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Quantization (signal)</topic><topic>Stage separation</topic><topic>Tracking errors</topic><toplevel>online_resources</toplevel><creatorcontrib>Guanyu Lai</creatorcontrib><creatorcontrib>Zhi Liu</creatorcontrib><creatorcontrib>Yun Zhang</creatorcontrib><creatorcontrib>Chen, Chun Lung Philip</creatorcontrib><creatorcontrib>Shengli Xie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guanyu Lai</au><au>Zhi Liu</au><au>Yun Zhang</au><au>Chen, Chun Lung Philip</au><au>Shengli Xie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>28</volume><issue>2</issue><spage>294</spage><epage>307</epage><pages>294-307</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantization effect and nonsmooth backlash nonlinearity. To resolve this challenge, this paper presents a two-stage separation approach established on two new technical components, which are the approximate asymmetric backlash model and the nonlinear decomposition of quantizer, respectively. Then the real control is successfully separated from the coupling dynamics. Furthermore, by employing the neural networks and adaptation method in control design, a quantized controller is developed to guarantee the asymptotic convergence of tracking error to an adjustable region of zero and uniform ultimate boundedness of all closed-loop signals. Eventually, simulations are conducted to support our theoretical results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28055913</pmid><doi>10.1109/TNNLS.2015.2506267</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2017-02, Vol.28 (2), p.294-307
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_1856596437
source IEEE Electronic Library (IEL) Journals
subjects Actuator backlash
Actuators
Adaptive control
adaptive quantized control
Artificial neural networks
Asymmetry
Computer simulation
Control systems design
Coupling
Lyapunov function
Neural networks
neural networks (NNs)
Nonlinear control
Nonlinear systems
Nonlinearity
Quantization (signal)
Stage separation
Tracking errors
title Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Actuator%20Backlash%20Compensation%20in%20Quantized%20Adaptive%20Control%20of%20Uncertain%20Networked%20Nonlinear%20Systems&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Guanyu%20Lai&rft.date=2017-02-01&rft.volume=28&rft.issue=2&rft.spage=294&rft.epage=307&rft.pages=294-307&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2506267&rft_dat=%3Cproquest_cross%3E2174451817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174451817&rft_id=info:pmid/28055913&rft_ieee_id=7365477&rfr_iscdi=true