Loading…
Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems
This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantizati...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2017-02, Vol.28 (2), p.294-307 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353 |
container_end_page | 307 |
container_issue | 2 |
container_start_page | 294 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 28 |
creator | Guanyu Lai Zhi Liu Yun Zhang Chen, Chun Lung Philip Shengli Xie |
description | This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantization effect and nonsmooth backlash nonlinearity. To resolve this challenge, this paper presents a two-stage separation approach established on two new technical components, which are the approximate asymmetric backlash model and the nonlinear decomposition of quantizer, respectively. Then the real control is successfully separated from the coupling dynamics. Furthermore, by employing the neural networks and adaptation method in control design, a quantized controller is developed to guarantee the asymptotic convergence of tracking error to an adjustable region of zero and uniform ultimate boundedness of all closed-loop signals. Eventually, simulations are conducted to support our theoretical results. |
doi_str_mv | 10.1109/TNNLS.2015.2506267 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1856596437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7365477</ieee_id><sourcerecordid>2174451817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353</originalsourceid><addsrcrecordid>eNpd0VuLEzEUB_Agirus-wUUJOCLL625TC7zWIs3KBXZCr6FNHMGszuTjElGqZ_e1NY-mJeEk985hPwRek7JklLSvtltt5u7JSNULJkgkkn1CF0zKtmCca0fX87q2xW6zfme1CWJkE37FF0xTYRoKb9G0yofxhFK8g6vXJltiQm_te5hsPk7XsdxgpBt8TFgH_CX2Ybif0OHV52div8JlYSS4oBjj78GB6nY6rZQfsX0UN02hsEHsAnfHXKBMT9DT3o7ZLg97zdo9_7dbv1xsfn84dN6tVk4LmhZqE7xllGnCemJtE3P9pRLSzRtyN7yWtS90lxwpvYcJKcCrNO9IE6prpZv0OvT2CnFHzPkYkafHQyDDRDnbKgWUrSy4arSV__R-zinUB9nGFVNI6imR8VOyqWYc4LeTMmPNh0MJeaYiPmbiDkmYs6J1KaX59HzfoTu0vLv_yt4cQIeAC7XikvRKMX_AP02j48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174451817</pqid></control><display><type>article</type><title>Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Guanyu Lai ; Zhi Liu ; Yun Zhang ; Chen, Chun Lung Philip ; Shengli Xie</creator><creatorcontrib>Guanyu Lai ; Zhi Liu ; Yun Zhang ; Chen, Chun Lung Philip ; Shengli Xie</creatorcontrib><description>This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantization effect and nonsmooth backlash nonlinearity. To resolve this challenge, this paper presents a two-stage separation approach established on two new technical components, which are the approximate asymmetric backlash model and the nonlinear decomposition of quantizer, respectively. Then the real control is successfully separated from the coupling dynamics. Furthermore, by employing the neural networks and adaptation method in control design, a quantized controller is developed to guarantee the asymptotic convergence of tracking error to an adjustable region of zero and uniform ultimate boundedness of all closed-loop signals. Eventually, simulations are conducted to support our theoretical results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2506267</identifier><identifier>PMID: 28055913</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuator backlash ; Actuators ; Adaptive control ; adaptive quantized control ; Artificial neural networks ; Asymmetry ; Computer simulation ; Control systems design ; Coupling ; Lyapunov function ; Neural networks ; neural networks (NNs) ; Nonlinear control ; Nonlinear systems ; Nonlinearity ; Quantization (signal) ; Stage separation ; Tracking errors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2017-02, Vol.28 (2), p.294-307</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353</citedby><cites>FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7365477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28055913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guanyu Lai</creatorcontrib><creatorcontrib>Zhi Liu</creatorcontrib><creatorcontrib>Yun Zhang</creatorcontrib><creatorcontrib>Chen, Chun Lung Philip</creatorcontrib><creatorcontrib>Shengli Xie</creatorcontrib><title>Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantization effect and nonsmooth backlash nonlinearity. To resolve this challenge, this paper presents a two-stage separation approach established on two new technical components, which are the approximate asymmetric backlash model and the nonlinear decomposition of quantizer, respectively. Then the real control is successfully separated from the coupling dynamics. Furthermore, by employing the neural networks and adaptation method in control design, a quantized controller is developed to guarantee the asymptotic convergence of tracking error to an adjustable region of zero and uniform ultimate boundedness of all closed-loop signals. Eventually, simulations are conducted to support our theoretical results.</description><subject>Actuator backlash</subject><subject>Actuators</subject><subject>Adaptive control</subject><subject>adaptive quantized control</subject><subject>Artificial neural networks</subject><subject>Asymmetry</subject><subject>Computer simulation</subject><subject>Control systems design</subject><subject>Coupling</subject><subject>Lyapunov function</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Quantization (signal)</subject><subject>Stage separation</subject><subject>Tracking errors</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpd0VuLEzEUB_Agirus-wUUJOCLL625TC7zWIs3KBXZCr6FNHMGszuTjElGqZ_e1NY-mJeEk985hPwRek7JklLSvtltt5u7JSNULJkgkkn1CF0zKtmCca0fX87q2xW6zfme1CWJkE37FF0xTYRoKb9G0yofxhFK8g6vXJltiQm_te5hsPk7XsdxgpBt8TFgH_CX2Ybif0OHV52div8JlYSS4oBjj78GB6nY6rZQfsX0UN02hsEHsAnfHXKBMT9DT3o7ZLg97zdo9_7dbv1xsfn84dN6tVk4LmhZqE7xllGnCemJtE3P9pRLSzRtyN7yWtS90lxwpvYcJKcCrNO9IE6prpZv0OvT2CnFHzPkYkafHQyDDRDnbKgWUrSy4arSV__R-zinUB9nGFVNI6imR8VOyqWYc4LeTMmPNh0MJeaYiPmbiDkmYs6J1KaX59HzfoTu0vLv_yt4cQIeAC7XikvRKMX_AP02j48</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Guanyu Lai</creator><creator>Zhi Liu</creator><creator>Yun Zhang</creator><creator>Chen, Chun Lung Philip</creator><creator>Shengli Xie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170201</creationdate><title>Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems</title><author>Guanyu Lai ; Zhi Liu ; Yun Zhang ; Chen, Chun Lung Philip ; Shengli Xie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuator backlash</topic><topic>Actuators</topic><topic>Adaptive control</topic><topic>adaptive quantized control</topic><topic>Artificial neural networks</topic><topic>Asymmetry</topic><topic>Computer simulation</topic><topic>Control systems design</topic><topic>Coupling</topic><topic>Lyapunov function</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Quantization (signal)</topic><topic>Stage separation</topic><topic>Tracking errors</topic><toplevel>online_resources</toplevel><creatorcontrib>Guanyu Lai</creatorcontrib><creatorcontrib>Zhi Liu</creatorcontrib><creatorcontrib>Yun Zhang</creatorcontrib><creatorcontrib>Chen, Chun Lung Philip</creatorcontrib><creatorcontrib>Shengli Xie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guanyu Lai</au><au>Zhi Liu</au><au>Yun Zhang</au><au>Chen, Chun Lung Philip</au><au>Shengli Xie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>28</volume><issue>2</issue><spage>294</spage><epage>307</epage><pages>294-307</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper mainly aims at the problem of adaptive quantized control for a class of uncertain nonlinear systems preceded by asymmetric actuator backlash. One challenging problem that blocks the construction of our control scheme is that the real control signal is wrapped in the coupling of quantization effect and nonsmooth backlash nonlinearity. To resolve this challenge, this paper presents a two-stage separation approach established on two new technical components, which are the approximate asymmetric backlash model and the nonlinear decomposition of quantizer, respectively. Then the real control is successfully separated from the coupling dynamics. Furthermore, by employing the neural networks and adaptation method in control design, a quantized controller is developed to guarantee the asymptotic convergence of tracking error to an adjustable region of zero and uniform ultimate boundedness of all closed-loop signals. Eventually, simulations are conducted to support our theoretical results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28055913</pmid><doi>10.1109/TNNLS.2015.2506267</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2017-02, Vol.28 (2), p.294-307 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_1856596437 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Actuator backlash Actuators Adaptive control adaptive quantized control Artificial neural networks Asymmetry Computer simulation Control systems design Coupling Lyapunov function Neural networks neural networks (NNs) Nonlinear control Nonlinear systems Nonlinearity Quantization (signal) Stage separation Tracking errors |
title | Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Actuator%20Backlash%20Compensation%20in%20Quantized%20Adaptive%20Control%20of%20Uncertain%20Networked%20Nonlinear%20Systems&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Guanyu%20Lai&rft.date=2017-02-01&rft.volume=28&rft.issue=2&rft.spage=294&rft.epage=307&rft.pages=294-307&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2506267&rft_dat=%3Cproquest_cross%3E2174451817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-7d73921c800f06a4f2b136a08140ba30f08f7835327b3e6315eac8f50c77d353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174451817&rft_id=info:pmid/28055913&rft_ieee_id=7365477&rfr_iscdi=true |