Loading…

Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber

In this paper, we used a thin polycarbonate (PC) chamber to improve the performance of an electrowetting lenticular lens array. The polycarbonate chamber changed the radius of curvature (ROC) of the oil acting as a lens, which increased the dioptric power of the liquid lens to 1666.7D. The increase...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2016-12, Vol.24 (26), p.29972-29983
Main Authors: Lee, Junsik, Kim, Junoh, Kim, Cheoljoong, Shin, Dooseub, Koo, Gyohyun, Sim, Jee Hoon, Won, Yong Hyub
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we used a thin polycarbonate (PC) chamber to improve the performance of an electrowetting lenticular lens array. The polycarbonate chamber changed the radius of curvature (ROC) of the oil acting as a lens, which increased the dioptric power of the liquid lens to 1666.7D. The increase in dioptric power required a reduction in the distance between the optical center of the lens and the display pixels under the chamber, which was accomplished by reducing the thickness of the chamber. The optimal thickness of the chamber was determined to be 0.5mm. Using this thin PC chamber, transmittance and viewing angle were measured and compared with an electrowetting lenticular lens with a conventional 1mm poly methyl methacrylate (PMMA) chamber was done. Crosstalk which degrades clear 3D images, is an inevitable factor in lenticular lens type multi-view systems. With the 0.5mm PC chamber, the viewing zone was expanded and the ratio of the crosstalk area was reduced, which resulted in a clear 3D image. The new method of depositing the electrode layer also ensured the uniform operation of the liquid lens array.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.24.029972