Loading…
The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii
The response of marine phytoplankton to the ongoing increase in atmospheric p CO 2 reflects the consequences of both increased CO 2 concentration and decreased pH in surface seawater. In the model diatom Thalassiosira weissflogii , we explored the effects of varying p CO 2 and pH, independently and...
Saved in:
Published in: | Photosynthesis research 2017-04, Vol.132 (1), p.83-93 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303 |
---|---|
cites | cdi_FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303 |
container_end_page | 93 |
container_issue | 1 |
container_start_page | 83 |
container_title | Photosynthesis research |
container_volume | 132 |
creator | Goldman, Johanna A. L. Bender, Michael L. Morel, François M. M. |
description | The response of marine phytoplankton to the ongoing increase in atmospheric
p
CO
2
reflects the consequences of both increased CO
2
concentration and decreased pH in surface seawater. In the model diatom
Thalassiosira weissflogii
, we explored the effects of varying
p
CO
2
and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H
2
18
O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or
p
CO
2
on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of
p
CO
2
or pH, even under limiting light intensity. We surmise that in
T. weissflogii
, it is the photosynthetic production of NADPH and ATP, rather than the CO
2
-saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H
+
and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric
p
CO
2
predicted for the twenty-first century. |
doi_str_mv | 10.1007/s11120-016-0330-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1856598234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321034083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303</originalsourceid><addsrcrecordid>eNp1kEFrGzEQhUVpIW7aH5CboJdeNh1Ju9rVsZgmDhhycc9C1o5smfVqq1lT_O8j1zmEQE9zeN_3GB5jdwLuBUD7g4QQEioQugKloJIf2EI0raoaaM1HtiiBrrrGNDfsM9EBADot1IL1mz1yDAH9TDwFPq24G3s-LZ8lTyOf9mlOdB7nPVKkf1FGmmJ2cyxxHHlJeB_dnI58s3eDI4qJSs7_YiQKQ9rF-IV9Cm4g_Pp6b9nvh1-b5apaPz8-LX-uKy91Lct7vulMDaGrndTeG4cKumCwd30btt5ta6NBNF4rj1uDoggGmw68QqMVqFv2_do75fTnhDTbYySPw-BGTCeyRdCN6aSqC_rtHXpIpzyW7wrVGqWNqLtCiSvlcyLKGOyU49HlsxVgL7vb6-62zGsvu1tZHHl1qLDjDvOb5v9KLwzkhVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879369148</pqid></control><display><type>article</type><title>The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii</title><source>Springer Nature</source><creator>Goldman, Johanna A. L. ; Bender, Michael L. ; Morel, François M. M.</creator><creatorcontrib>Goldman, Johanna A. L. ; Bender, Michael L. ; Morel, François M. M.</creatorcontrib><description>The response of marine phytoplankton to the ongoing increase in atmospheric
p
CO
2
reflects the consequences of both increased CO
2
concentration and decreased pH in surface seawater. In the model diatom
Thalassiosira weissflogii
, we explored the effects of varying
p
CO
2
and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H
2
18
O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or
p
CO
2
on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of
p
CO
2
or pH, even under limiting light intensity. We surmise that in
T. weissflogii
, it is the photosynthetic production of NADPH and ATP, rather than the CO
2
-saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H
+
and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric
p
CO
2
predicted for the twenty-first century.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-016-0330-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Carbon dioxide ; Life Sciences ; Original Article ; Photosynthesis ; Plankton ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Respiration</subject><ispartof>Photosynthesis research, 2017-04, Vol.132 (1), p.83-93</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Photosynthesis Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303</citedby><cites>FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303</cites><orcidid>0000-0002-6311-7826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Goldman, Johanna A. L.</creatorcontrib><creatorcontrib>Bender, Michael L.</creatorcontrib><creatorcontrib>Morel, François M. M.</creatorcontrib><title>The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><description>The response of marine phytoplankton to the ongoing increase in atmospheric
p
CO
2
reflects the consequences of both increased CO
2
concentration and decreased pH in surface seawater. In the model diatom
Thalassiosira weissflogii
, we explored the effects of varying
p
CO
2
and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H
2
18
O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or
p
CO
2
on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of
p
CO
2
or pH, even under limiting light intensity. We surmise that in
T. weissflogii
, it is the photosynthetic production of NADPH and ATP, rather than the CO
2
-saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H
+
and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric
p
CO
2
predicted for the twenty-first century.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Plankton</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Respiration</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFrGzEQhUVpIW7aH5CboJdeNh1Ju9rVsZgmDhhycc9C1o5smfVqq1lT_O8j1zmEQE9zeN_3GB5jdwLuBUD7g4QQEioQugKloJIf2EI0raoaaM1HtiiBrrrGNDfsM9EBADot1IL1mz1yDAH9TDwFPq24G3s-LZ8lTyOf9mlOdB7nPVKkf1FGmmJ2cyxxHHlJeB_dnI58s3eDI4qJSs7_YiQKQ9rF-IV9Cm4g_Pp6b9nvh1-b5apaPz8-LX-uKy91Lct7vulMDaGrndTeG4cKumCwd30btt5ta6NBNF4rj1uDoggGmw68QqMVqFv2_do75fTnhDTbYySPw-BGTCeyRdCN6aSqC_rtHXpIpzyW7wrVGqWNqLtCiSvlcyLKGOyU49HlsxVgL7vb6-62zGsvu1tZHHl1qLDjDvOb5v9KLwzkhVU</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Goldman, Johanna A. L.</creator><creator>Bender, Michael L.</creator><creator>Morel, François M. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6311-7826</orcidid></search><sort><creationdate>20170401</creationdate><title>The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii</title><author>Goldman, Johanna A. L. ; Bender, Michael L. ; Morel, François M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Plankton</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldman, Johanna A. L.</creatorcontrib><creatorcontrib>Bender, Michael L.</creatorcontrib><creatorcontrib>Morel, François M. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldman, Johanna A. L.</au><au>Bender, Michael L.</au><au>Morel, François M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>132</volume><issue>1</issue><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>The response of marine phytoplankton to the ongoing increase in atmospheric
p
CO
2
reflects the consequences of both increased CO
2
concentration and decreased pH in surface seawater. In the model diatom
Thalassiosira weissflogii
, we explored the effects of varying
p
CO
2
and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H
2
18
O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or
p
CO
2
on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of
p
CO
2
or pH, even under limiting light intensity. We surmise that in
T. weissflogii
, it is the photosynthetic production of NADPH and ATP, rather than the CO
2
-saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H
+
and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric
p
CO
2
predicted for the twenty-first century.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11120-016-0330-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6311-7826</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8595 |
ispartof | Photosynthesis research, 2017-04, Vol.132 (1), p.83-93 |
issn | 0166-8595 1573-5079 |
language | eng |
recordid | cdi_proquest_miscellaneous_1856598234 |
source | Springer Nature |
subjects | Biochemistry Biomedical and Life Sciences Carbon dioxide Life Sciences Original Article Photosynthesis Plankton Plant Genetics and Genomics Plant Physiology Plant Sciences Respiration |
title | The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20pH%20and%20pCO2%20on%20photosynthesis%20and%20respiration%20in%20the%20diatom%20Thalassiosira%20weissflogii&rft.jtitle=Photosynthesis%20research&rft.au=Goldman,%20Johanna%20A.%20L.&rft.date=2017-04-01&rft.volume=132&rft.issue=1&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-016-0330-2&rft_dat=%3Cproquest_cross%3E4321034083%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879369148&rft_id=info:pmid/&rfr_iscdi=true |