Loading…

The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii

The response of marine phytoplankton to the ongoing increase in atmospheric p CO 2 reflects the consequences of both increased CO 2 concentration and decreased pH in surface seawater. In the model diatom Thalassiosira weissflogii , we explored the effects of varying p CO 2 and pH, independently and...

Full description

Saved in:
Bibliographic Details
Published in:Photosynthesis research 2017-04, Vol.132 (1), p.83-93
Main Authors: Goldman, Johanna A. L., Bender, Michael L., Morel, François M. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303
cites cdi_FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303
container_end_page 93
container_issue 1
container_start_page 83
container_title Photosynthesis research
container_volume 132
creator Goldman, Johanna A. L.
Bender, Michael L.
Morel, François M. M.
description The response of marine phytoplankton to the ongoing increase in atmospheric p CO 2 reflects the consequences of both increased CO 2 concentration and decreased pH in surface seawater. In the model diatom Thalassiosira weissflogii , we explored the effects of varying p CO 2 and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H 2 18 O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or p CO 2 on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of p CO 2 or pH, even under limiting light intensity. We surmise that in T. weissflogii , it is the photosynthetic production of NADPH and ATP, rather than the CO 2 -saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H + and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric p CO 2 predicted for the twenty-first century.
doi_str_mv 10.1007/s11120-016-0330-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1856598234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321034083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303</originalsourceid><addsrcrecordid>eNp1kEFrGzEQhUVpIW7aH5CboJdeNh1Ju9rVsZgmDhhycc9C1o5smfVqq1lT_O8j1zmEQE9zeN_3GB5jdwLuBUD7g4QQEioQugKloJIf2EI0raoaaM1HtiiBrrrGNDfsM9EBADot1IL1mz1yDAH9TDwFPq24G3s-LZ8lTyOf9mlOdB7nPVKkf1FGmmJ2cyxxHHlJeB_dnI58s3eDI4qJSs7_YiQKQ9rF-IV9Cm4g_Pp6b9nvh1-b5apaPz8-LX-uKy91Lct7vulMDaGrndTeG4cKumCwd30btt5ta6NBNF4rj1uDoggGmw68QqMVqFv2_do75fTnhDTbYySPw-BGTCeyRdCN6aSqC_rtHXpIpzyW7wrVGqWNqLtCiSvlcyLKGOyU49HlsxVgL7vb6-62zGsvu1tZHHl1qLDjDvOb5v9KLwzkhVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879369148</pqid></control><display><type>article</type><title>The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii</title><source>Springer Nature</source><creator>Goldman, Johanna A. L. ; Bender, Michael L. ; Morel, François M. M.</creator><creatorcontrib>Goldman, Johanna A. L. ; Bender, Michael L. ; Morel, François M. M.</creatorcontrib><description>The response of marine phytoplankton to the ongoing increase in atmospheric p CO 2 reflects the consequences of both increased CO 2 concentration and decreased pH in surface seawater. In the model diatom Thalassiosira weissflogii , we explored the effects of varying p CO 2 and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H 2 18 O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or p CO 2 on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of p CO 2 or pH, even under limiting light intensity. We surmise that in T. weissflogii , it is the photosynthetic production of NADPH and ATP, rather than the CO 2 -saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H + and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric p CO 2 predicted for the twenty-first century.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-016-0330-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Carbon dioxide ; Life Sciences ; Original Article ; Photosynthesis ; Plankton ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Respiration</subject><ispartof>Photosynthesis research, 2017-04, Vol.132 (1), p.83-93</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Photosynthesis Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303</citedby><cites>FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303</cites><orcidid>0000-0002-6311-7826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Goldman, Johanna A. L.</creatorcontrib><creatorcontrib>Bender, Michael L.</creatorcontrib><creatorcontrib>Morel, François M. M.</creatorcontrib><title>The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><description>The response of marine phytoplankton to the ongoing increase in atmospheric p CO 2 reflects the consequences of both increased CO 2 concentration and decreased pH in surface seawater. In the model diatom Thalassiosira weissflogii , we explored the effects of varying p CO 2 and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H 2 18 O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or p CO 2 on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of p CO 2 or pH, even under limiting light intensity. We surmise that in T. weissflogii , it is the photosynthetic production of NADPH and ATP, rather than the CO 2 -saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H + and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric p CO 2 predicted for the twenty-first century.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Plankton</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Respiration</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFrGzEQhUVpIW7aH5CboJdeNh1Ju9rVsZgmDhhycc9C1o5smfVqq1lT_O8j1zmEQE9zeN_3GB5jdwLuBUD7g4QQEioQugKloJIf2EI0raoaaM1HtiiBrrrGNDfsM9EBADot1IL1mz1yDAH9TDwFPq24G3s-LZ8lTyOf9mlOdB7nPVKkf1FGmmJ2cyxxHHlJeB_dnI58s3eDI4qJSs7_YiQKQ9rF-IV9Cm4g_Pp6b9nvh1-b5apaPz8-LX-uKy91Lct7vulMDaGrndTeG4cKumCwd30btt5ta6NBNF4rj1uDoggGmw68QqMVqFv2_do75fTnhDTbYySPw-BGTCeyRdCN6aSqC_rtHXpIpzyW7wrVGqWNqLtCiSvlcyLKGOyU49HlsxVgL7vb6-62zGsvu1tZHHl1qLDjDvOb5v9KLwzkhVU</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Goldman, Johanna A. L.</creator><creator>Bender, Michael L.</creator><creator>Morel, François M. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6311-7826</orcidid></search><sort><creationdate>20170401</creationdate><title>The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii</title><author>Goldman, Johanna A. L. ; Bender, Michael L. ; Morel, François M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Plankton</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldman, Johanna A. L.</creatorcontrib><creatorcontrib>Bender, Michael L.</creatorcontrib><creatorcontrib>Morel, François M. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldman, Johanna A. L.</au><au>Bender, Michael L.</au><au>Morel, François M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>132</volume><issue>1</issue><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>The response of marine phytoplankton to the ongoing increase in atmospheric p CO 2 reflects the consequences of both increased CO 2 concentration and decreased pH in surface seawater. In the model diatom Thalassiosira weissflogii , we explored the effects of varying p CO 2 and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H 2 18 O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or p CO 2 on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of p CO 2 or pH, even under limiting light intensity. We surmise that in T. weissflogii , it is the photosynthetic production of NADPH and ATP, rather than the CO 2 -saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H + and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric p CO 2 predicted for the twenty-first century.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11120-016-0330-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6311-7826</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2017-04, Vol.132 (1), p.83-93
issn 0166-8595
1573-5079
language eng
recordid cdi_proquest_miscellaneous_1856598234
source Springer Nature
subjects Biochemistry
Biomedical and Life Sciences
Carbon dioxide
Life Sciences
Original Article
Photosynthesis
Plankton
Plant Genetics and Genomics
Plant Physiology
Plant Sciences
Respiration
title The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20pH%20and%20pCO2%20on%20photosynthesis%20and%20respiration%20in%20the%20diatom%20Thalassiosira%20weissflogii&rft.jtitle=Photosynthesis%20research&rft.au=Goldman,%20Johanna%20A.%20L.&rft.date=2017-04-01&rft.volume=132&rft.issue=1&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-016-0330-2&rft_dat=%3Cproquest_cross%3E4321034083%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2642-85c58940f84a26cc9ae308f9edad7fbcab496015c63ceb9e185c9e580c3e96303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879369148&rft_id=info:pmid/&rfr_iscdi=true