Loading…
MALAT1 Is Associated with Poor Response to Oxaliplatin-Based Chemotherapy in Colorectal Cancer Patients and Promotes Chemoresistance through EZH2
A major reason for oxaliplatin chemoresistance in colorectal cancer is the acquisition of epithelial-mesenchymal transition (EMT) in cancer cells. The long noncoding RNA (lncRNA), MALAT1, is a highly conserved nuclear ncRNA and a key regulator of metastasis development in several cancers. However, i...
Saved in:
Published in: | Molecular cancer therapeutics 2017-04, Vol.16 (4), p.739-751 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A major reason for oxaliplatin chemoresistance in colorectal cancer is the acquisition of epithelial-mesenchymal transition (EMT) in cancer cells. The long noncoding RNA (lncRNA), MALAT1, is a highly conserved nuclear ncRNA and a key regulator of metastasis development in several cancers. However, its role in oxaliplatin-induced metastasis and chemoresistance is not well known. In this study, we aim to investigate the prognostic and therapeutic role of lncRNA MALAT1 in colorectal cancer patients receiving oxaliplatin-based therapy and further explore the potential transcriptional regulation through interaction with EZH2 based on the established HT29 oxaliplatin-resistant cells. Our results showed that high MALAT1 expression was associated with reduced patient survival and poor response to oxaliplatin-based chemotherapy in advanced colorectal cancer patients. Oxaliplatin-resistant colorectal cancer cells exhibited high MALAT1 expression and EMT. LncRNA MALAT1 knockdown enhances E-cadherin expression and inhibits oxaliplatin-induced EMT in colorectal cancer cells. EZH2 is highly expressed and associated with the 3' end region of lncRNA MALAT1 in colorectal cancer, and this association suppressed the expression of E-cadherin. Furthermore, targeted inhibition of MALAT1 or EZH2 reversed EMT and chemoresistance induced by oxaliplatin. Finally, the interaction between lncRNA MALAT1 and miR-218 was observed, which further indicated its prognostic value in patients who received standard FOLFOX (oxaliplatin combine with 5-fluorouracil and leucovorin) treatment. In conclusion, this study illuminates the prognostic role of lncRNA MALAT1 in colorectal cancer patients receiving oxaliplatin-based treatment and further demonstrates how lncRNA MALAT1 confers a chemoresistant function in colorectal cancer. Thus, lncRNA MALAT1 may serve as a promising prognostic and therapeutic target for colorectal cancer patients.
. |
---|---|
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-16-0591 |