Loading…

Heterogeneous Nucleation of an n‑Alkane on Tetrahedrally Coordinated Crystals

Heterogeneous nucleation refers to the propensity for phase transformations to initiate preferentially on foreign surfaces, such as vessel walls, dust particles, or formulation additives. In crystallization, the form of the initial nucleus has ramifications for the crystallographic form, morphology,...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2017-02, Vol.121 (4), p.904-911
Main Authors: Bourque, Alexander J, Locker, C. Rebecca, Rutledge, Gregory C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heterogeneous nucleation refers to the propensity for phase transformations to initiate preferentially on foreign surfaces, such as vessel walls, dust particles, or formulation additives. In crystallization, the form of the initial nucleus has ramifications for the crystallographic form, morphology, and properties of the resulting solid. Nevertheless, the discovery and design of nucleating agents remains a matter of trial and error because of the very small spatiotemporal scales over which the critical nucleus is formed and the extreme difficulty of examining such events empirically. Using molecular dynamics simulations, we demonstrate a method for the rapid screening of entire families of materials for activity as nucleating agents and for characterizing their mechanism of action. The method is applied to the crystallization of n-pentacontane, a model surrogate for polyethylene, on the family of tetrahedrally coordinated crystals, including diamond and silicon. A systematic variation of parameters in the interaction potential permits a comprehensive, physically based screening of nucleating agents in this class of materials, including both real and hypothetical candidates. The induction time for heterogeneous nucleation is shown to depend strongly on crystallographic registry between the nucleating agent and the critical nucleus, indicative of an epitaxial mechanism in this class of materials. Importantly, the severity of this registry requirement weakens with decreasing rigidity of the substrate and increasing strength of attraction to the surface of the nucleating agent. Employing this method, a high-throughput computational screening of nucleating agents becomes possible, facilitating the discovery of novel nucleating agents within a broad “materials genome” of possible additives.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.6b12590