Loading…

Acetabular defect classification in times of 3D imaging and patient-specific treatment protocols

Parallel to the rising number of revision hip procedures, an increasing number of complex periprosthetic osseous defects can be expected. Stable long-term fixation of the revision implant remains the ultimate goal of the surgical protocol. Within this context, an elaborate preoperative planning proc...

Full description

Saved in:
Bibliographic Details
Published in:Der Orthopäde 2017-02, Vol.46 (2), p.168-178
Main Authors: Horas, K., Arnholdt, J., Steinert, A. F., Hoberg, M., Rudert, M., Holzapfel, B. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Parallel to the rising number of revision hip procedures, an increasing number of complex periprosthetic osseous defects can be expected. Stable long-term fixation of the revision implant remains the ultimate goal of the surgical protocol. Within this context, an elaborate preoperative planning process including anticipation of the periacetabular defect form and size and analysis of the remaining supporting osseous elements are essential. However, detection and evaluation of periacetabular bone defects using an unsystematic analysis of plain anteroposterior radiographs of the pelvis is in many cases difficult. Therefore, periacetabular bone defect classification schemes such as the Paprosky system have been introduced that use standardized radiographic criteria to better anticipate the intraoperative reality. Recent studies were able to demonstrate that larger defects are often underestimated when using the Paprosky classification and that the intra- and interobserver reliability of the system is low. This makes it hard to compare results in terms of defects being studied. Novel software tools that are based on the analysis of CT data may provide an opportunity to overcome the limitations of native radiographic defect analysis. In the following article we discuss potential benefits of these novel instruments against the background of the obvious limitations of the currently used native radiographic defect analysis.
ISSN:0085-4530
1433-0431
DOI:10.1007/s00132-016-3378-y