Loading…

On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods

The surface free energy of polymeric films of polyvinylchloride (PVC) + poly(ethylene-co-vinylacetate) (EVA) blends was calculated using the van Oss treatment (Lifshitz and electron donor–electron acceptor components of surface free energy) and the Owens–Wendt treatment (dispersive and nondispersive...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 1998-12, Vol.208 (1), p.319-328
Main Authors: Michalski, Marie-Caroline, Hardy, Joël, Saramago, Benilde J.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-9dd78a10bc13eb779f231ca4e00f6eb616a276a496adf12f36653df0d9b1cb1d3
cites cdi_FETCH-LOGICAL-c436t-9dd78a10bc13eb779f231ca4e00f6eb616a276a496adf12f36653df0d9b1cb1d3
container_end_page 328
container_issue 1
container_start_page 319
container_title Journal of colloid and interface science
container_volume 208
creator Michalski, Marie-Caroline
Hardy, Joël
Saramago, Benilde J.V.
description The surface free energy of polymeric films of polyvinylchloride (PVC) + poly(ethylene-co-vinylacetate) (EVA) blends was calculated using the van Oss treatment (Lifshitz and electron donor–electron acceptor components of surface free energy) and the Owens–Wendt treatment (dispersive and nondispersive components of surface free energy). Surface free energy results were found to be greatly dependent on the calculation method and on the number of standard liquids used for contact angle measurements. The nondispersive/donor–acceptor surface free energy component and the total surface free energy of polymeric films were always higher when the van Oss treatment was used compared to the Owens–Wendt treatment. Conversely, both methods led to similar apolar/Lifshitz components. All the calculation methods were in good agreement for the surface free energy of PVC; however, a discrepancy between the methods arose as EVA content in the blends increased. It seems that there is not yet a definite solution for the calculation of solid surface free energy. Further developments of existing models are needed in order to gain consistency when calculating this important physicochemical quantity.
doi_str_mv 10.1006/jcis.1998.5814
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859215158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979798958143</els_id><sourcerecordid>1859215158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-9dd78a10bc13eb779f231ca4e00f6eb616a276a496adf12f36653df0d9b1cb1d3</originalsourceid><addsrcrecordid>eNp1kL1v1DAYhy1EVY7SlQ3JAwNLrn6Tiz_YSriWSkWtBO1qOfZr6iqJDztBuv-eRHfq1snD73kfWQ8hH4GtgTF-8WxDXoNScl1L2LwhK2CqLgSw6i1ZMVZCoYQS78j7nJ8ZA6hrdUpOlSyZkGxFzN1Axyekv6bkjUV6lRDpdsD0Z0-jp_ePzcX28ZLex27fY6LfOhxc_kqb2O9MCjkOC_U9eI8Jh5E2prNTZ8YwDz9xfIoufyAn3nQZz4_vGXm42v5ufhS3d9c3zeVtYTcVHwvlnJAGWGuhwlYI5csKrNkgY55jy4GbUnCzUdw4D6WvOK8r55lTLdgWXHVGvhy8uxT_TphH3YdssevMgHHKGmStSqihljO6PqA2xZwTer1LoTdpr4Hppapequqlql6qzgefju6p7dG94MeM8_75uJtsTeeTGRbBi5VLKXg5Y_KA4dzhX8Cksw04WHQhoR21i-G1H_wHX22SZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859215158</pqid></control><display><type>article</type><title>On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods</title><source>Elsevier</source><creator>Michalski, Marie-Caroline ; Hardy, Joël ; Saramago, Benilde J.V.</creator><creatorcontrib>Michalski, Marie-Caroline ; Hardy, Joël ; Saramago, Benilde J.V.</creatorcontrib><description>The surface free energy of polymeric films of polyvinylchloride (PVC) + poly(ethylene-co-vinylacetate) (EVA) blends was calculated using the van Oss treatment (Lifshitz and electron donor–electron acceptor components of surface free energy) and the Owens–Wendt treatment (dispersive and nondispersive components of surface free energy). Surface free energy results were found to be greatly dependent on the calculation method and on the number of standard liquids used for contact angle measurements. The nondispersive/donor–acceptor surface free energy component and the total surface free energy of polymeric films were always higher when the van Oss treatment was used compared to the Owens–Wendt treatment. Conversely, both methods led to similar apolar/Lifshitz components. All the calculation methods were in good agreement for the surface free energy of PVC; however, a discrepancy between the methods arose as EVA content in the blends increased. It seems that there is not yet a definite solution for the calculation of solid surface free energy. Further developments of existing models are needed in order to gain consistency when calculating this important physicochemical quantity.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1006/jcis.1998.5814</identifier><identifier>PMID: 9820780</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>acid–base interactions ; Applied sciences ; contact angle ; EVA ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; polymer blends ; Properties and characterization ; PVC ; surface free energy ; surface free energy components ; Surface properties</subject><ispartof>Journal of colloid and interface science, 1998-12, Vol.208 (1), p.319-328</ispartof><rights>1998 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-9dd78a10bc13eb779f231ca4e00f6eb616a276a496adf12f36653df0d9b1cb1d3</citedby><cites>FETCH-LOGICAL-c436t-9dd78a10bc13eb779f231ca4e00f6eb616a276a496adf12f36653df0d9b1cb1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1688762$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9820780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michalski, Marie-Caroline</creatorcontrib><creatorcontrib>Hardy, Joël</creatorcontrib><creatorcontrib>Saramago, Benilde J.V.</creatorcontrib><title>On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>The surface free energy of polymeric films of polyvinylchloride (PVC) + poly(ethylene-co-vinylacetate) (EVA) blends was calculated using the van Oss treatment (Lifshitz and electron donor–electron acceptor components of surface free energy) and the Owens–Wendt treatment (dispersive and nondispersive components of surface free energy). Surface free energy results were found to be greatly dependent on the calculation method and on the number of standard liquids used for contact angle measurements. The nondispersive/donor–acceptor surface free energy component and the total surface free energy of polymeric films were always higher when the van Oss treatment was used compared to the Owens–Wendt treatment. Conversely, both methods led to similar apolar/Lifshitz components. All the calculation methods were in good agreement for the surface free energy of PVC; however, a discrepancy between the methods arose as EVA content in the blends increased. It seems that there is not yet a definite solution for the calculation of solid surface free energy. Further developments of existing models are needed in order to gain consistency when calculating this important physicochemical quantity.</description><subject>acid–base interactions</subject><subject>Applied sciences</subject><subject>contact angle</subject><subject>EVA</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>polymer blends</subject><subject>Properties and characterization</subject><subject>PVC</subject><subject>surface free energy</subject><subject>surface free energy components</subject><subject>Surface properties</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kL1v1DAYhy1EVY7SlQ3JAwNLrn6Tiz_YSriWSkWtBO1qOfZr6iqJDztBuv-eRHfq1snD73kfWQ8hH4GtgTF-8WxDXoNScl1L2LwhK2CqLgSw6i1ZMVZCoYQS78j7nJ8ZA6hrdUpOlSyZkGxFzN1Axyekv6bkjUV6lRDpdsD0Z0-jp_ePzcX28ZLex27fY6LfOhxc_kqb2O9MCjkOC_U9eI8Jh5E2prNTZ8YwDz9xfIoufyAn3nQZz4_vGXm42v5ufhS3d9c3zeVtYTcVHwvlnJAGWGuhwlYI5csKrNkgY55jy4GbUnCzUdw4D6WvOK8r55lTLdgWXHVGvhy8uxT_TphH3YdssevMgHHKGmStSqihljO6PqA2xZwTer1LoTdpr4Hppapequqlql6qzgefju6p7dG94MeM8_75uJtsTeeTGRbBi5VLKXg5Y_KA4dzhX8Cksw04WHQhoR21i-G1H_wHX22SZg</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Michalski, Marie-Caroline</creator><creator>Hardy, Joël</creator><creator>Saramago, Benilde J.V.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981201</creationdate><title>On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods</title><author>Michalski, Marie-Caroline ; Hardy, Joël ; Saramago, Benilde J.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-9dd78a10bc13eb779f231ca4e00f6eb616a276a496adf12f36653df0d9b1cb1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>acid–base interactions</topic><topic>Applied sciences</topic><topic>contact angle</topic><topic>EVA</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>polymer blends</topic><topic>Properties and characterization</topic><topic>PVC</topic><topic>surface free energy</topic><topic>surface free energy components</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalski, Marie-Caroline</creatorcontrib><creatorcontrib>Hardy, Joël</creatorcontrib><creatorcontrib>Saramago, Benilde J.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalski, Marie-Caroline</au><au>Hardy, Joël</au><au>Saramago, Benilde J.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>1998-12-01</date><risdate>1998</risdate><volume>208</volume><issue>1</issue><spage>319</spage><epage>328</epage><pages>319-328</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>The surface free energy of polymeric films of polyvinylchloride (PVC) + poly(ethylene-co-vinylacetate) (EVA) blends was calculated using the van Oss treatment (Lifshitz and electron donor–electron acceptor components of surface free energy) and the Owens–Wendt treatment (dispersive and nondispersive components of surface free energy). Surface free energy results were found to be greatly dependent on the calculation method and on the number of standard liquids used for contact angle measurements. The nondispersive/donor–acceptor surface free energy component and the total surface free energy of polymeric films were always higher when the van Oss treatment was used compared to the Owens–Wendt treatment. Conversely, both methods led to similar apolar/Lifshitz components. All the calculation methods were in good agreement for the surface free energy of PVC; however, a discrepancy between the methods arose as EVA content in the blends increased. It seems that there is not yet a definite solution for the calculation of solid surface free energy. Further developments of existing models are needed in order to gain consistency when calculating this important physicochemical quantity.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>9820780</pmid><doi>10.1006/jcis.1998.5814</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 1998-12, Vol.208 (1), p.319-328
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_1859215158
source Elsevier
subjects acid–base interactions
Applied sciences
contact angle
EVA
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
polymer blends
Properties and characterization
PVC
surface free energy
surface free energy components
Surface properties
title On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Surface%20Free%20Energy%20of%20PVC/EVA%20Polymer%20Blends:%20Comparison%20of%20Different%20Calculation%20Methods&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Michalski,%20Marie-Caroline&rft.date=1998-12-01&rft.volume=208&rft.issue=1&rft.spage=319&rft.epage=328&rft.pages=319-328&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1006/jcis.1998.5814&rft_dat=%3Cproquest_cross%3E1859215158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-9dd78a10bc13eb779f231ca4e00f6eb616a276a496adf12f36653df0d9b1cb1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859215158&rft_id=info:pmid/9820780&rfr_iscdi=true