Loading…

Quantum cryptography using entangled photons in energy-time bell states

We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2000-05, Vol.84 (20), p.4737-4740
Main Authors: Tittel, W, Brendel, J, Zbinden, H, Gisin, N
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-c67bf0dd272078728cf5d9cba3ad6cd01746074c1bd55a7f54857269ae4282ea3
cites cdi_FETCH-LOGICAL-c419t-c67bf0dd272078728cf5d9cba3ad6cd01746074c1bd55a7f54857269ae4282ea3
container_end_page 4740
container_issue 20
container_start_page 4737
container_title Physical review letters
container_volume 84
creator Tittel, W
Brendel, J
Zbinden, H
Gisin, N
description We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.
doi_str_mv 10.1103/physrevlett.84.4737
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859330288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859330288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-c67bf0dd272078728cf5d9cba3ad6cd01746074c1bd55a7f54857269ae4282ea3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMotlafQJBZupl6cplJspSiVSh4Qdchk2Takbk5yRTm7U1pF64O_PyXw4fQLYYlxkAf-t3kB7evXQhLwZaMU36G5hi4TDnG7BzNAShOJQCfoSvvfwAAk1xcohkGKYELNkfrj1G3YWwSM0x96LaDjrXJ6Kt2m7g26HZbO5v0uy50rU-qNopu2E5pqBqXFK6uEx90cP4aXZS69u7mdBfo-_npa_WSbt7Wr6vHTWoYliE1OS9KsJZwEvc5EabMrDSFptrmxgLmLAfODC5slmleZkxknORSO0YEcZou0P2xtx-639H5oJrKm_iHbl03eoVFJikFIkS00qPVDJ2PpErVD1Wjh0lhUAeC6j0S_HT7TSSoBFMHgjF1dxoYi8bZf5kjMvoHwN5wqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859330288</pqid></control><display><type>article</type><title>Quantum cryptography using entangled photons in energy-time bell states</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Tittel, W ; Brendel, J ; Zbinden, H ; Gisin, N</creator><creatorcontrib>Tittel, W ; Brendel, J ; Zbinden, H ; Gisin, N</creatorcontrib><description>We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.84.4737</identifier><identifier>PMID: 10990784</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2000-05, Vol.84 (20), p.4737-4740</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-c67bf0dd272078728cf5d9cba3ad6cd01746074c1bd55a7f54857269ae4282ea3</citedby><cites>FETCH-LOGICAL-c419t-c67bf0dd272078728cf5d9cba3ad6cd01746074c1bd55a7f54857269ae4282ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10990784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tittel, W</creatorcontrib><creatorcontrib>Brendel, J</creatorcontrib><creatorcontrib>Zbinden, H</creatorcontrib><creatorcontrib>Gisin, N</creatorcontrib><title>Quantum cryptography using entangled photons in energy-time bell states</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEUhoMotlafQJBZupl6cplJspSiVSh4Qdchk2Takbk5yRTm7U1pF64O_PyXw4fQLYYlxkAf-t3kB7evXQhLwZaMU36G5hi4TDnG7BzNAShOJQCfoSvvfwAAk1xcohkGKYELNkfrj1G3YWwSM0x96LaDjrXJ6Kt2m7g26HZbO5v0uy50rU-qNopu2E5pqBqXFK6uEx90cP4aXZS69u7mdBfo-_npa_WSbt7Wr6vHTWoYliE1OS9KsJZwEvc5EabMrDSFptrmxgLmLAfODC5slmleZkxknORSO0YEcZou0P2xtx-639H5oJrKm_iHbl03eoVFJikFIkS00qPVDJ2PpErVD1Wjh0lhUAeC6j0S_HT7TSSoBFMHgjF1dxoYi8bZf5kjMvoHwN5wqg</recordid><startdate>20000515</startdate><enddate>20000515</enddate><creator>Tittel, W</creator><creator>Brendel, J</creator><creator>Zbinden, H</creator><creator>Gisin, N</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000515</creationdate><title>Quantum cryptography using entangled photons in energy-time bell states</title><author>Tittel, W ; Brendel, J ; Zbinden, H ; Gisin, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-c67bf0dd272078728cf5d9cba3ad6cd01746074c1bd55a7f54857269ae4282ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tittel, W</creatorcontrib><creatorcontrib>Brendel, J</creatorcontrib><creatorcontrib>Zbinden, H</creatorcontrib><creatorcontrib>Gisin, N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tittel, W</au><au>Brendel, J</au><au>Zbinden, H</au><au>Gisin, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum cryptography using entangled photons in energy-time bell states</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2000-05-15</date><risdate>2000</risdate><volume>84</volume><issue>20</issue><spage>4737</spage><epage>4740</epage><pages>4737-4740</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.</abstract><cop>United States</cop><pmid>10990784</pmid><doi>10.1103/physrevlett.84.4737</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2000-05, Vol.84 (20), p.4737-4740
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1859330288
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Quantum cryptography using entangled photons in energy-time bell states
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20cryptography%20using%20entangled%20photons%20in%20energy-time%20bell%20states&rft.jtitle=Physical%20review%20letters&rft.au=Tittel,%20W&rft.date=2000-05-15&rft.volume=84&rft.issue=20&rft.spage=4737&rft.epage=4740&rft.pages=4737-4740&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.84.4737&rft_dat=%3Cproquest_cross%3E1859330288%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-c67bf0dd272078728cf5d9cba3ad6cd01746074c1bd55a7f54857269ae4282ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859330288&rft_id=info:pmid/10990784&rfr_iscdi=true