Loading…

Basic physics of laser propagation in hollow waveguides

The basic theory of laser propagation in hollow waveguides is considered in the context of laser-plasma physics. The physical model of waves reflecting between the guide walls is used to show that there is a discrete series of modes, and to give the mode dispersion relation and losses in terms of a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-11, Vol.62 (5 Pt B), p.7168-7180
Main Authors: Davies, JR, Mendonca, JT
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-19d8d48a088c88955c36d3ebb6506687ebe846c59c372a9bf28cc35a702ccb893
cites cdi_FETCH-LOGICAL-c297t-19d8d48a088c88955c36d3ebb6506687ebe846c59c372a9bf28cc35a702ccb893
container_end_page 7180
container_issue 5 Pt B
container_start_page 7168
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 62
creator Davies, JR
Mendonca, JT
description The basic theory of laser propagation in hollow waveguides is considered in the context of laser-plasma physics. The physical model of waves reflecting between the guide walls is used to show that there is a discrete series of modes, and to give the mode dispersion relation and losses in terms of a given reflectivity. The mathematical connection between this model and the solution of Maxwell's equations for lossless propagation in a cylinder is given. Thus the solutions for low loss propagation for any given reflectivity can be obtained, provided it is close to 1. Results are given using Fresnel reflectivity for perfect dielectric and finite conductivity waveguides. The relationship of the breakdown intensity in dielectric waveguides to known breakdown intensities is also derived. The practical implications for the guiding of intense laser pulses and the limitations of the model are discussed. The theory is shown to explain, at least qualitatively, a number of previous experimental results.
doi_str_mv 10.1103/PhysRevE.62.7168
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859332105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859332105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-19d8d48a088c88955c36d3ebb6506687ebe846c59c372a9bf28cc35a702ccb893</originalsourceid><addsrcrecordid>eNpFkEtLw0AURgdRbK3uXcks3aTOo_NaaqkPKCii4G6Y3EzakaQTM01L_70prXg39y6-83E5CF1TMqaU8Lu35S69-81sLNlYUalP0JASIzKutDrd35JnUtCvAbpI6Zv0Qwk5RwPa04woPkTqwaUAuOmLAiQcS1y55FvctLFxC7cOcYXDCi9jVcUt3rqNX3Sh8OkSnZWuSv7quEfo83H2MX3O5q9PL9P7eQbMqHVGTaGLiXZEa9DaCAFcFtznuRRESq187vVEgjDAFXMmL5kG4MIpwgBybfgI3R56-4d-Op_Wtg4JfFW5lY9dslQLwzmjRPRRcohCG1NqfWmbNtSu3VlK7F6X_dNlJbN7XT1yc2zv8toX_8DRD_8FVPVm8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859332105</pqid></control><display><type>article</type><title>Basic physics of laser propagation in hollow waveguides</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Davies, JR ; Mendonca, JT</creator><creatorcontrib>Davies, JR ; Mendonca, JT</creatorcontrib><description>The basic theory of laser propagation in hollow waveguides is considered in the context of laser-plasma physics. The physical model of waves reflecting between the guide walls is used to show that there is a discrete series of modes, and to give the mode dispersion relation and losses in terms of a given reflectivity. The mathematical connection between this model and the solution of Maxwell's equations for lossless propagation in a cylinder is given. Thus the solutions for low loss propagation for any given reflectivity can be obtained, provided it is close to 1. Results are given using Fresnel reflectivity for perfect dielectric and finite conductivity waveguides. The relationship of the breakdown intensity in dielectric waveguides to known breakdown intensities is also derived. The practical implications for the guiding of intense laser pulses and the limitations of the model are discussed. The theory is shown to explain, at least qualitatively, a number of previous experimental results.</description><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.62.7168</identifier><identifier>PMID: 11102073</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-11, Vol.62 (5 Pt B), p.7168-7180</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-19d8d48a088c88955c36d3ebb6506687ebe846c59c372a9bf28cc35a702ccb893</citedby><cites>FETCH-LOGICAL-c297t-19d8d48a088c88955c36d3ebb6506687ebe846c59c372a9bf28cc35a702ccb893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11102073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies, JR</creatorcontrib><creatorcontrib>Mendonca, JT</creatorcontrib><title>Basic physics of laser propagation in hollow waveguides</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics</addtitle><description>The basic theory of laser propagation in hollow waveguides is considered in the context of laser-plasma physics. The physical model of waves reflecting between the guide walls is used to show that there is a discrete series of modes, and to give the mode dispersion relation and losses in terms of a given reflectivity. The mathematical connection between this model and the solution of Maxwell's equations for lossless propagation in a cylinder is given. Thus the solutions for low loss propagation for any given reflectivity can be obtained, provided it is close to 1. Results are given using Fresnel reflectivity for perfect dielectric and finite conductivity waveguides. The relationship of the breakdown intensity in dielectric waveguides to known breakdown intensities is also derived. The practical implications for the guiding of intense laser pulses and the limitations of the model are discussed. The theory is shown to explain, at least qualitatively, a number of previous experimental results.</description><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AURgdRbK3uXcks3aTOo_NaaqkPKCii4G6Y3EzakaQTM01L_70prXg39y6-83E5CF1TMqaU8Lu35S69-81sLNlYUalP0JASIzKutDrd35JnUtCvAbpI6Zv0Qwk5RwPa04woPkTqwaUAuOmLAiQcS1y55FvctLFxC7cOcYXDCi9jVcUt3rqNX3Sh8OkSnZWuSv7quEfo83H2MX3O5q9PL9P7eQbMqHVGTaGLiXZEa9DaCAFcFtznuRRESq187vVEgjDAFXMmL5kG4MIpwgBybfgI3R56-4d-Op_Wtg4JfFW5lY9dslQLwzmjRPRRcohCG1NqfWmbNtSu3VlK7F6X_dNlJbN7XT1yc2zv8toX_8DRD_8FVPVm8Q</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Davies, JR</creator><creator>Mendonca, JT</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20001101</creationdate><title>Basic physics of laser propagation in hollow waveguides</title><author>Davies, JR ; Mendonca, JT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-19d8d48a088c88955c36d3ebb6506687ebe846c59c372a9bf28cc35a702ccb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies, JR</creatorcontrib><creatorcontrib>Mendonca, JT</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, JR</au><au>Mendonca, JT</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic physics of laser propagation in hollow waveguides</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>62</volume><issue>5 Pt B</issue><spage>7168</spage><epage>7180</epage><pages>7168-7180</pages><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>The basic theory of laser propagation in hollow waveguides is considered in the context of laser-plasma physics. The physical model of waves reflecting between the guide walls is used to show that there is a discrete series of modes, and to give the mode dispersion relation and losses in terms of a given reflectivity. The mathematical connection between this model and the solution of Maxwell's equations for lossless propagation in a cylinder is given. Thus the solutions for low loss propagation for any given reflectivity can be obtained, provided it is close to 1. Results are given using Fresnel reflectivity for perfect dielectric and finite conductivity waveguides. The relationship of the breakdown intensity in dielectric waveguides to known breakdown intensities is also derived. The practical implications for the guiding of intense laser pulses and the limitations of the model are discussed. The theory is shown to explain, at least qualitatively, a number of previous experimental results.</abstract><cop>United States</cop><pmid>11102073</pmid><doi>10.1103/PhysRevE.62.7168</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-651X
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-11, Vol.62 (5 Pt B), p.7168-7180
issn 1063-651X
1095-3787
language eng
recordid cdi_proquest_miscellaneous_1859332105
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Basic physics of laser propagation in hollow waveguides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20physics%20of%20laser%20propagation%20in%20hollow%20waveguides&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Davies,%20JR&rft.date=2000-11-01&rft.volume=62&rft.issue=5%20Pt%20B&rft.spage=7168&rft.epage=7180&rft.pages=7168-7180&rft.issn=1063-651X&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.62.7168&rft_dat=%3Cproquest_cross%3E1859332105%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-19d8d48a088c88955c36d3ebb6506687ebe846c59c372a9bf28cc35a702ccb893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859332105&rft_id=info:pmid/11102073&rfr_iscdi=true