Loading…

Protonation in electrospray mass spectrometry: wrong-way-round or right-way-round?

The term “wrong-way-round ionization” has been used in studies of electrospray ionization to describe the observation of protonated or deprotonated ions when sampling strongly basic or acidic solutions (respectively) where such ions are not expected to exist in appreciable concentrations in solution...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2000-11, Vol.11 (11), p.961-966
Main Authors: Zhou, Shaolian, Cook, Kelsey D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The term “wrong-way-round ionization” has been used in studies of electrospray ionization to describe the observation of protonated or deprotonated ions when sampling strongly basic or acidic solutions (respectively) where such ions are not expected to exist in appreciable concentrations in solution. Study of the dependence of ionization of the weak base caffeine on the electrospray capillary potential reveals three distinct contributors to wrong-way-round ionization. At near-neutral pH in solutions of low ionic strength, protonation of caffeine results from the surface enrichment of electrolytically produced protons in the surface layer of the droplets from which ions are desorbed. For solutions made strongly basic with ammonia, gas-phase proton transfer from ammonium ions can create protonated caffeine. These two mechanisms have been discussed previously elsewhere. For solutions of high ionic strength at neutral or high pH, the data suggest that discharge-induced ionization is responsible for the production of protonated caffeine. This mechanism probably accounts for some of the wrong-way-round ionization reported elsewhere.
ISSN:1044-0305
1879-1123
DOI:10.1016/S1044-0305(00)00174-4