Loading…

In vivo sucrose stimulation of colour change in citrus fruit epicarps: Interactions between nutritional and hormonal signals

During ripening, citrus fruit‐peel undergoes ‘colour break’, a process characterized by the conversion of chloroplast to chromoplast. The process involves the progressive loss of chlorophylls and the gain of carotenoids, changing peel colour from green to orange. In the present work, the in vivo and...

Full description

Saved in:
Bibliographic Details
Published in:Physiologia plantarum 2001-06, Vol.112 (2), p.244-250
Main Authors: Iglesias, Domingo J., Tadeo, Francisco R., Legaz, Francisco, Primo-Millo, Eduardo, Talon, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During ripening, citrus fruit‐peel undergoes ‘colour break’, a process characterized by the conversion of chloroplast to chromoplast. The process involves the progressive loss of chlorophylls and the gain of carotenoids, changing peel colour from green to orange. In the present work, the in vivo and in vitro effects of supplemented nutrients (sucrose and nitrogen) and phytohormones (gibberellins [GA] and ethylene) on colour change in fruit epicarp of Satsuma mandarin (Citrus unshiu (Mak.) Marc., cv. Okitsu), were studied. The rate of colour break was correlated positively with sucrose content and negatively with nitrogen content. The removal of leaves blocked natural sucrose build‐up and nitrogen reduction in the peel. Defoliation also inhibited chlorophyll disappearance and carotenoid accumulation, thereby preventing colour break. In vivo sucrose supplementation promoted sucrose accumulation and advanced colour break. In both in vivo and in vitro experiments, colour change promoted by sucrose was unaffected by ethylene but delayed by GA3. In non‐supplemented plants, ethylene accelerated colour break while GA3 had no detectable effects. Ethylene inhibitors effectively counteracted the sucrose effects on colour change. Collectively, these results suggest that the chloroplast to chromoplast conversion in citrus fruit epicarps is stimulated by sucrose accumulation. The sugar regulation appears to operate via ethylene, whereas GA may act as a repressor of the sucrose‐ethylene stimulation.
ISSN:0031-9317
1399-3054
DOI:10.1034/j.1399-3054.2001.1120213.x