Loading…

Chemoselectivity in the Reactions of Acetylketene and Acetimidoylketene:  Confirmation of Theoretical Predictions

Acetylketene (1) was generated by flash pyrolysis of 2,2,6-trimethyl-4H-1,3-dioxin-4-one (6). The selectivities of 1 toward a number of representative functional groups were measured for the first time in a series of competitive trapping reactions. The trend in reactivities toward 1 follows the gene...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 1997-10, Vol.62 (21), p.7114-7120
Main Authors: Birney, David M, Xu, Xiaolian, Ham, Sihyun, Huang, Xiaomeng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acetylketene (1) was generated by flash pyrolysis of 2,2,6-trimethyl-4H-1,3-dioxin-4-one (6). The selectivities of 1 toward a number of representative functional groups were measured for the first time in a series of competitive trapping reactions. The trend in reactivities toward 1 follows the general order amines > alcohols ≫ aldehydes ≈ ketones and can be rationalized by considering both the nucleophilicity and the electrophilicity of the reacting species. Alcohols show significant selectivity based on steric hindrance, with MeOH ≈ 1° > 2° > 3°. These selectivities are consistent with the activation energies and the pseudopericyclic transition structure previously calculated for the addition of water to formylketene. The results, presented here, of ab initio transition structure calculations for the addition of ammonia to formylketene are qualitatively consistent with the experimental trends as well. N-Propylacetacetimidoylketene (2) was generated by the solution pyrolysis of tert-butyl N-propyl-3-amino-2-butenoate (9a) and showed similar selectivity toward alcohols as opposed to ketones and similar steric discrimination toward alcohols. This is again in agreement with previous ab initio calculations. Taken together, these experimental trends in the reactivities of both 1 and 2 toward a variety of reagents provide strong, although indirect support for the planar, pseudopericyclic transition structures for these reactions which are predicted by ab initio calculations.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo971083d