Loading…

Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces

We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain condition...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 1997-08, Vol.10 (6), p.1061-1068
Main Authors: Kůrková, Věra, Kainen, Paul C., Kreinovich, Vladik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3
cites cdi_FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3
container_end_page 1068
container_issue 6
container_start_page 1061
container_title Neural networks
container_volume 10
creator Kůrková, Věra
Kainen, Paul C.
Kreinovich, Vladik
description We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order O 1/ n by one-hidden-layer networks with n sigmoidal perceptrons. © 1997 Elsevier Science Ltd.
doi_str_mv 10.1016/S0893-6080(97)00028-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859402250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608097000282</els_id><sourcerecordid>1859402250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3</originalsourceid><addsrcrecordid>eNqF0MtOGzEUgGGrAjUp9BGKvGBBF0PtM56xvaoQAoKEQG1ot5bHPqMYJTOp7YB4-zokosuuLEvf8eUn5Atn55zx9tucKV1XLVPsTMuvjDFQFXwgU66krkAqOCDTdzIhn1J6KqhVov5IJhzaFoTWU_LjKuWwshkTHXuaF0jvN6sO43Y3C97jQH8NISdqB09_2xhsDuNAX0Je0J-Y1ugyzSOd2WVfzdfWYTomh71dJvy8X4_I_Prq8XJW3T3c3F5e3FVOAM-V7ZTnQkLNG9WIrq-5F9Zq3XvfqlrWIFoHiMJ2DkB7KXrpZOdbDb3nXX1EznanruP4Z4Mpm1VIDpdLO-C4SYarRgsG0LBCmx11cUwpYm_WsXw5vhrOzLaleWtptqGMluatpYEyd7K_YtOt0P-b2scr4HQPbHIlQLSDC-ndgQKQWhb2fcew1HgOGE1yAQeHPsSSz_gx_OclfwElzY-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859402250</pqid></control><display><type>article</type><title>Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kůrková, Věra ; Kainen, Paul C. ; Kreinovich, Vladik</creator><creatorcontrib>Kůrková, Věra ; Kainen, Paul C. ; Kreinovich, Vladik</creatorcontrib><description>We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order O 1/ n by one-hidden-layer networks with n sigmoidal perceptrons. © 1997 Elsevier Science Ltd.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(97)00028-2</identifier><identifier>PMID: 12662499</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Approximation of functions ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; One-hidden-layer sigmoidal networks – Estimates of the number of hidden units – Variation with respect to half-spaces – Integral representation</subject><ispartof>Neural networks, 1997-08, Vol.10 (6), p.1061-1068</ispartof><rights>1997 Elsevier Science Ltd</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3</citedby><cites>FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2822797$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kůrková, Věra</creatorcontrib><creatorcontrib>Kainen, Paul C.</creatorcontrib><creatorcontrib>Kreinovich, Vladik</creatorcontrib><title>Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order O 1/ n by one-hidden-layer networks with n sigmoidal perceptrons. © 1997 Elsevier Science Ltd.</description><subject>Applied sciences</subject><subject>Approximation of functions</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>One-hidden-layer sigmoidal networks – Estimates of the number of hidden units – Variation with respect to half-spaces – Integral representation</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0MtOGzEUgGGrAjUp9BGKvGBBF0PtM56xvaoQAoKEQG1ot5bHPqMYJTOp7YB4-zokosuuLEvf8eUn5Atn55zx9tucKV1XLVPsTMuvjDFQFXwgU66krkAqOCDTdzIhn1J6KqhVov5IJhzaFoTWU_LjKuWwshkTHXuaF0jvN6sO43Y3C97jQH8NISdqB09_2xhsDuNAX0Je0J-Y1ugyzSOd2WVfzdfWYTomh71dJvy8X4_I_Prq8XJW3T3c3F5e3FVOAM-V7ZTnQkLNG9WIrq-5F9Zq3XvfqlrWIFoHiMJ2DkB7KXrpZOdbDb3nXX1EznanruP4Z4Mpm1VIDpdLO-C4SYarRgsG0LBCmx11cUwpYm_WsXw5vhrOzLaleWtptqGMluatpYEyd7K_YtOt0P-b2scr4HQPbHIlQLSDC-ndgQKQWhb2fcew1HgOGE1yAQeHPsSSz_gx_OclfwElzY-C</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Kůrková, Věra</creator><creator>Kainen, Paul C.</creator><creator>Kreinovich, Vladik</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19970801</creationdate><title>Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces</title><author>Kůrková, Věra ; Kainen, Paul C. ; Kreinovich, Vladik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Approximation of functions</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>One-hidden-layer sigmoidal networks – Estimates of the number of hidden units – Variation with respect to half-spaces – Integral representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kůrková, Věra</creatorcontrib><creatorcontrib>Kainen, Paul C.</creatorcontrib><creatorcontrib>Kreinovich, Vladik</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kůrková, Věra</au><au>Kainen, Paul C.</au><au>Kreinovich, Vladik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>1997-08-01</date><risdate>1997</risdate><volume>10</volume><issue>6</issue><spage>1061</spage><epage>1068</epage><pages>1061-1068</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order O 1/ n by one-hidden-layer networks with n sigmoidal perceptrons. © 1997 Elsevier Science Ltd.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12662499</pmid><doi>10.1016/S0893-6080(97)00028-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 1997-08, Vol.10 (6), p.1061-1068
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1859402250
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Approximation of functions
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
One-hidden-layer sigmoidal networks – Estimates of the number of hidden units – Variation with respect to half-spaces – Integral representation
title Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20of%20the%20Number%20of%20Hidden%20Units%20and%20Variation%20with%20Respect%20to%20Half-Spaces&rft.jtitle=Neural%20networks&rft.au=K%C5%AFrkov%C3%A1,%20V%C4%9Bra&rft.date=1997-08-01&rft.volume=10&rft.issue=6&rft.spage=1061&rft.epage=1068&rft.pages=1061-1068&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(97)00028-2&rft_dat=%3Cproquest_cross%3E1859402250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859402250&rft_id=info:pmid/12662499&rfr_iscdi=true