Loading…
Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces
We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain condition...
Saved in:
Published in: | Neural networks 1997-08, Vol.10 (6), p.1061-1068 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3 |
container_end_page | 1068 |
container_issue | 6 |
container_start_page | 1061 |
container_title | Neural networks |
container_volume | 10 |
creator | Kůrková, Věra Kainen, Paul C. Kreinovich, Vladik |
description | We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order
O
1/
n
by one-hidden-layer networks with n sigmoidal perceptrons. ©
1997 Elsevier Science Ltd. |
doi_str_mv | 10.1016/S0893-6080(97)00028-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859402250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608097000282</els_id><sourcerecordid>1859402250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3</originalsourceid><addsrcrecordid>eNqF0MtOGzEUgGGrAjUp9BGKvGBBF0PtM56xvaoQAoKEQG1ot5bHPqMYJTOp7YB4-zokosuuLEvf8eUn5Atn55zx9tucKV1XLVPsTMuvjDFQFXwgU66krkAqOCDTdzIhn1J6KqhVov5IJhzaFoTWU_LjKuWwshkTHXuaF0jvN6sO43Y3C97jQH8NISdqB09_2xhsDuNAX0Je0J-Y1ugyzSOd2WVfzdfWYTomh71dJvy8X4_I_Prq8XJW3T3c3F5e3FVOAM-V7ZTnQkLNG9WIrq-5F9Zq3XvfqlrWIFoHiMJ2DkB7KXrpZOdbDb3nXX1EznanruP4Z4Mpm1VIDpdLO-C4SYarRgsG0LBCmx11cUwpYm_WsXw5vhrOzLaleWtptqGMluatpYEyd7K_YtOt0P-b2scr4HQPbHIlQLSDC-ndgQKQWhb2fcew1HgOGE1yAQeHPsSSz_gx_OclfwElzY-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859402250</pqid></control><display><type>article</type><title>Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kůrková, Věra ; Kainen, Paul C. ; Kreinovich, Vladik</creator><creatorcontrib>Kůrková, Věra ; Kainen, Paul C. ; Kreinovich, Vladik</creatorcontrib><description>We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order
O
1/
n
by one-hidden-layer networks with n sigmoidal perceptrons. ©
1997 Elsevier Science Ltd.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(97)00028-2</identifier><identifier>PMID: 12662499</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Approximation of functions ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; One-hidden-layer sigmoidal networks – Estimates of the number of hidden units – Variation with respect to half-spaces – Integral representation</subject><ispartof>Neural networks, 1997-08, Vol.10 (6), p.1061-1068</ispartof><rights>1997 Elsevier Science Ltd</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3</citedby><cites>FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2822797$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kůrková, Věra</creatorcontrib><creatorcontrib>Kainen, Paul C.</creatorcontrib><creatorcontrib>Kreinovich, Vladik</creatorcontrib><title>Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order
O
1/
n
by one-hidden-layer networks with n sigmoidal perceptrons. ©
1997 Elsevier Science Ltd.</description><subject>Applied sciences</subject><subject>Approximation of functions</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>One-hidden-layer sigmoidal networks – Estimates of the number of hidden units – Variation with respect to half-spaces – Integral representation</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0MtOGzEUgGGrAjUp9BGKvGBBF0PtM56xvaoQAoKEQG1ot5bHPqMYJTOp7YB4-zokosuuLEvf8eUn5Atn55zx9tucKV1XLVPsTMuvjDFQFXwgU66krkAqOCDTdzIhn1J6KqhVov5IJhzaFoTWU_LjKuWwshkTHXuaF0jvN6sO43Y3C97jQH8NISdqB09_2xhsDuNAX0Je0J-Y1ugyzSOd2WVfzdfWYTomh71dJvy8X4_I_Prq8XJW3T3c3F5e3FVOAM-V7ZTnQkLNG9WIrq-5F9Zq3XvfqlrWIFoHiMJ2DkB7KXrpZOdbDb3nXX1EznanruP4Z4Mpm1VIDpdLO-C4SYarRgsG0LBCmx11cUwpYm_WsXw5vhrOzLaleWtptqGMluatpYEyd7K_YtOt0P-b2scr4HQPbHIlQLSDC-ndgQKQWhb2fcew1HgOGE1yAQeHPsSSz_gx_OclfwElzY-C</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Kůrková, Věra</creator><creator>Kainen, Paul C.</creator><creator>Kreinovich, Vladik</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19970801</creationdate><title>Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces</title><author>Kůrková, Věra ; Kainen, Paul C. ; Kreinovich, Vladik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Approximation of functions</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>One-hidden-layer sigmoidal networks – Estimates of the number of hidden units – Variation with respect to half-spaces – Integral representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kůrková, Věra</creatorcontrib><creatorcontrib>Kainen, Paul C.</creatorcontrib><creatorcontrib>Kreinovich, Vladik</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kůrková, Věra</au><au>Kainen, Paul C.</au><au>Kreinovich, Vladik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>1997-08-01</date><risdate>1997</risdate><volume>10</volume><issue>6</issue><spage>1061</spage><epage>1068</epage><pages>1061-1068</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”. Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order
O
1/
n
by one-hidden-layer networks with n sigmoidal perceptrons. ©
1997 Elsevier Science Ltd.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12662499</pmid><doi>10.1016/S0893-6080(97)00028-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 1997-08, Vol.10 (6), p.1061-1068 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859402250 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Approximation of functions Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology One-hidden-layer sigmoidal networks – Estimates of the number of hidden units – Variation with respect to half-spaces – Integral representation |
title | Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20of%20the%20Number%20of%20Hidden%20Units%20and%20Variation%20with%20Respect%20to%20Half-Spaces&rft.jtitle=Neural%20networks&rft.au=K%C5%AFrkov%C3%A1,%20V%C4%9Bra&rft.date=1997-08-01&rft.volume=10&rft.issue=6&rft.spage=1061&rft.epage=1068&rft.pages=1061-1068&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(97)00028-2&rft_dat=%3Cproquest_cross%3E1859402250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-ab8d1472315854bf31d4aa99fdd68373246c2ee4abc229d74f7c7bd692fd1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859402250&rft_id=info:pmid/12662499&rfr_iscdi=true |