Loading…

The importance of correcting for signal drift in diffusion MRI

Purpose To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. Methods We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diff...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2017-01, Vol.77 (1), p.285-299
Main Authors: Vos, Sjoerd B., Tax, Chantal M. W., Luijten, Peter R., Ourselin, Sebastien, Leemans, Alexander, Froeling, Martijn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3
cites cdi_FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3
container_end_page 299
container_issue 1
container_start_page 285
container_title Magnetic resonance in medicine
container_volume 77
creator Vos, Sjoerd B.
Tax, Chantal M. W.
Luijten, Peter R.
Ourselin, Sebastien
Leemans, Alexander
Froeling, Martijn
description Purpose To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. Methods We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diffusion‐weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Results Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15‐min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. Conclusion By interspersing the non‐diffusion‐weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285–299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
doi_str_mv 10.1002/mrm.26124
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859485420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4287203431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3</originalsourceid><addsrcrecordid>eNqN0c1LwzAYBvAgipsfB_8BCXjRQ2fyNmmaiyDDj4FDED2HNk1mRtvMZEX239u56UFQPL2XH8_Dy4PQCSUjSghcNqEZQUaB7aAh5QAJcMl20ZAIRpKUSjZABzHOCSFSCraPBpDlAIKQIbp6fjXYNQsflkWrDfYWax-C0UvXzrD1AUc3a4saV8HZJXYtrpy1XXS-xdOnyRHas0UdzfH2HqKX25vn8X3y8Hg3GV8_JJpTzpK0gjIvM0PyyvJSWiaNTjW3JZc5qXhZiMpAQTnJbKW5oAJ0LiCDQpQkz6xOD9H5JncR_Ftn4lI1LmpT10VrfBcVzfuPc86A_INClvWSs56e_aBz34X-26gAZMoYZ1L-pfpakFymYl17sVE6-BiDsWoRXFOElaJErVdS_Urqc6Xenm4Tu7Ix1bf8mqUHlxvw7mqz-j1JTZ-mm8gPmAKYlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852959370</pqid></control><display><type>article</type><title>The importance of correcting for signal drift in diffusion MRI</title><source>Wiley</source><creator>Vos, Sjoerd B. ; Tax, Chantal M. W. ; Luijten, Peter R. ; Ourselin, Sebastien ; Leemans, Alexander ; Froeling, Martijn</creator><creatorcontrib>Vos, Sjoerd B. ; Tax, Chantal M. W. ; Luijten, Peter R. ; Ourselin, Sebastien ; Leemans, Alexander ; Froeling, Martijn</creatorcontrib><description>Purpose To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. Methods We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diffusion‐weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Results Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15‐min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. Conclusion By interspersing the non‐diffusion‐weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285–299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26124</identifier><identifier>PMID: 26822700</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; artefact correction ; Brain - diagnostic imaging ; Data analysis ; Diffusion effects ; Diffusion Magnetic Resonance Imaging - methods ; diffusion tensor imaging ; Diffusion Tensor Imaging - methods ; Drift ; Eigenvalues ; Eigenvectors ; fiber tractography ; high angular resolution diffusion imaging ; Humans ; Image acquisition ; Image Processing, Computer-Assisted - methods ; Kurtosis ; Magnetic resonance imaging ; Medicine ; Nerve Fibers - physiology ; Parameter estimation ; Phantoms, Imaging ; Resonance ; Scanners ; Signal Processing, Computer-Assisted ; Stability analysis ; Tensors</subject><ispartof>Magnetic resonance in medicine, 2017-01, Vol.77 (1), p.285-299</ispartof><rights>2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2017 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3</citedby><cites>FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26822700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vos, Sjoerd B.</creatorcontrib><creatorcontrib>Tax, Chantal M. W.</creatorcontrib><creatorcontrib>Luijten, Peter R.</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Leemans, Alexander</creatorcontrib><creatorcontrib>Froeling, Martijn</creatorcontrib><title>The importance of correcting for signal drift in diffusion MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. Methods We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diffusion‐weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Results Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15‐min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. Conclusion By interspersing the non‐diffusion‐weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285–299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</description><subject>Anisotropy</subject><subject>artefact correction</subject><subject>Brain - diagnostic imaging</subject><subject>Data analysis</subject><subject>Diffusion effects</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion tensor imaging</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Drift</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>fiber tractography</subject><subject>high angular resolution diffusion imaging</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Kurtosis</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Nerve Fibers - physiology</subject><subject>Parameter estimation</subject><subject>Phantoms, Imaging</subject><subject>Resonance</subject><subject>Scanners</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Stability analysis</subject><subject>Tensors</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqN0c1LwzAYBvAgipsfB_8BCXjRQ2fyNmmaiyDDj4FDED2HNk1mRtvMZEX239u56UFQPL2XH8_Dy4PQCSUjSghcNqEZQUaB7aAh5QAJcMl20ZAIRpKUSjZABzHOCSFSCraPBpDlAIKQIbp6fjXYNQsflkWrDfYWax-C0UvXzrD1AUc3a4saV8HZJXYtrpy1XXS-xdOnyRHas0UdzfH2HqKX25vn8X3y8Hg3GV8_JJpTzpK0gjIvM0PyyvJSWiaNTjW3JZc5qXhZiMpAQTnJbKW5oAJ0LiCDQpQkz6xOD9H5JncR_Ftn4lI1LmpT10VrfBcVzfuPc86A_INClvWSs56e_aBz34X-26gAZMoYZ1L-pfpakFymYl17sVE6-BiDsWoRXFOElaJErVdS_Urqc6Xenm4Tu7Ix1bf8mqUHlxvw7mqz-j1JTZ-mm8gPmAKYlA</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Vos, Sjoerd B.</creator><creator>Tax, Chantal M. W.</creator><creator>Luijten, Peter R.</creator><creator>Ourselin, Sebastien</creator><creator>Leemans, Alexander</creator><creator>Froeling, Martijn</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201701</creationdate><title>The importance of correcting for signal drift in diffusion MRI</title><author>Vos, Sjoerd B. ; Tax, Chantal M. W. ; Luijten, Peter R. ; Ourselin, Sebastien ; Leemans, Alexander ; Froeling, Martijn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>artefact correction</topic><topic>Brain - diagnostic imaging</topic><topic>Data analysis</topic><topic>Diffusion effects</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion tensor imaging</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Drift</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>fiber tractography</topic><topic>high angular resolution diffusion imaging</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Kurtosis</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Nerve Fibers - physiology</topic><topic>Parameter estimation</topic><topic>Phantoms, Imaging</topic><topic>Resonance</topic><topic>Scanners</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Stability analysis</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vos, Sjoerd B.</creatorcontrib><creatorcontrib>Tax, Chantal M. W.</creatorcontrib><creatorcontrib>Luijten, Peter R.</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Leemans, Alexander</creatorcontrib><creatorcontrib>Froeling, Martijn</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vos, Sjoerd B.</au><au>Tax, Chantal M. W.</au><au>Luijten, Peter R.</au><au>Ourselin, Sebastien</au><au>Leemans, Alexander</au><au>Froeling, Martijn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The importance of correcting for signal drift in diffusion MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2017-01</date><risdate>2017</risdate><volume>77</volume><issue>1</issue><spage>285</spage><epage>299</epage><pages>285-299</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. Methods We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diffusion‐weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Results Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15‐min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. Conclusion By interspersing the non‐diffusion‐weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285–299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>26822700</pmid><doi>10.1002/mrm.26124</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2017-01, Vol.77 (1), p.285-299
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1859485420
source Wiley
subjects Anisotropy
artefact correction
Brain - diagnostic imaging
Data analysis
Diffusion effects
Diffusion Magnetic Resonance Imaging - methods
diffusion tensor imaging
Diffusion Tensor Imaging - methods
Drift
Eigenvalues
Eigenvectors
fiber tractography
high angular resolution diffusion imaging
Humans
Image acquisition
Image Processing, Computer-Assisted - methods
Kurtosis
Magnetic resonance imaging
Medicine
Nerve Fibers - physiology
Parameter estimation
Phantoms, Imaging
Resonance
Scanners
Signal Processing, Computer-Assisted
Stability analysis
Tensors
title The importance of correcting for signal drift in diffusion MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20importance%20of%20correcting%20for%20signal%20drift%20in%20diffusion%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Vos,%20Sjoerd%20B.&rft.date=2017-01&rft.volume=77&rft.issue=1&rft.spage=285&rft.epage=299&rft.pages=285-299&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.26124&rft_dat=%3Cproquest_cross%3E4287203431%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1852959370&rft_id=info:pmid/26822700&rfr_iscdi=true