Loading…
The importance of correcting for signal drift in diffusion MRI
Purpose To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. Methods We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diff...
Saved in:
Published in: | Magnetic resonance in medicine 2017-01, Vol.77 (1), p.285-299 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3 |
container_end_page | 299 |
container_issue | 1 |
container_start_page | 285 |
container_title | Magnetic resonance in medicine |
container_volume | 77 |
creator | Vos, Sjoerd B. Tax, Chantal M. W. Luijten, Peter R. Ourselin, Sebastien Leemans, Alexander Froeling, Martijn |
description | Purpose
To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift.
Methods
We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diffusion‐weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated.
Results
Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15‐min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan.
Conclusion
By interspersing the non‐diffusion‐weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285–299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. |
doi_str_mv | 10.1002/mrm.26124 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859485420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4287203431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3</originalsourceid><addsrcrecordid>eNqN0c1LwzAYBvAgipsfB_8BCXjRQ2fyNmmaiyDDj4FDED2HNk1mRtvMZEX239u56UFQPL2XH8_Dy4PQCSUjSghcNqEZQUaB7aAh5QAJcMl20ZAIRpKUSjZABzHOCSFSCraPBpDlAIKQIbp6fjXYNQsflkWrDfYWax-C0UvXzrD1AUc3a4saV8HZJXYtrpy1XXS-xdOnyRHas0UdzfH2HqKX25vn8X3y8Hg3GV8_JJpTzpK0gjIvM0PyyvJSWiaNTjW3JZc5qXhZiMpAQTnJbKW5oAJ0LiCDQpQkz6xOD9H5JncR_Ftn4lI1LmpT10VrfBcVzfuPc86A_INClvWSs56e_aBz34X-26gAZMoYZ1L-pfpakFymYl17sVE6-BiDsWoRXFOElaJErVdS_Urqc6Xenm4Tu7Ix1bf8mqUHlxvw7mqz-j1JTZ-mm8gPmAKYlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852959370</pqid></control><display><type>article</type><title>The importance of correcting for signal drift in diffusion MRI</title><source>Wiley</source><creator>Vos, Sjoerd B. ; Tax, Chantal M. W. ; Luijten, Peter R. ; Ourselin, Sebastien ; Leemans, Alexander ; Froeling, Martijn</creator><creatorcontrib>Vos, Sjoerd B. ; Tax, Chantal M. W. ; Luijten, Peter R. ; Ourselin, Sebastien ; Leemans, Alexander ; Froeling, Martijn</creatorcontrib><description>Purpose
To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift.
Methods
We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diffusion‐weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated.
Results
Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15‐min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan.
Conclusion
By interspersing the non‐diffusion‐weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285–299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26124</identifier><identifier>PMID: 26822700</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; artefact correction ; Brain - diagnostic imaging ; Data analysis ; Diffusion effects ; Diffusion Magnetic Resonance Imaging - methods ; diffusion tensor imaging ; Diffusion Tensor Imaging - methods ; Drift ; Eigenvalues ; Eigenvectors ; fiber tractography ; high angular resolution diffusion imaging ; Humans ; Image acquisition ; Image Processing, Computer-Assisted - methods ; Kurtosis ; Magnetic resonance imaging ; Medicine ; Nerve Fibers - physiology ; Parameter estimation ; Phantoms, Imaging ; Resonance ; Scanners ; Signal Processing, Computer-Assisted ; Stability analysis ; Tensors</subject><ispartof>Magnetic resonance in medicine, 2017-01, Vol.77 (1), p.285-299</ispartof><rights>2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2017 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3</citedby><cites>FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26822700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vos, Sjoerd B.</creatorcontrib><creatorcontrib>Tax, Chantal M. W.</creatorcontrib><creatorcontrib>Luijten, Peter R.</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Leemans, Alexander</creatorcontrib><creatorcontrib>Froeling, Martijn</creatorcontrib><title>The importance of correcting for signal drift in diffusion MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift.
Methods
We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diffusion‐weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated.
Results
Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15‐min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan.
Conclusion
By interspersing the non‐diffusion‐weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285–299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</description><subject>Anisotropy</subject><subject>artefact correction</subject><subject>Brain - diagnostic imaging</subject><subject>Data analysis</subject><subject>Diffusion effects</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion tensor imaging</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Drift</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>fiber tractography</subject><subject>high angular resolution diffusion imaging</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Kurtosis</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Nerve Fibers - physiology</subject><subject>Parameter estimation</subject><subject>Phantoms, Imaging</subject><subject>Resonance</subject><subject>Scanners</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Stability analysis</subject><subject>Tensors</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqN0c1LwzAYBvAgipsfB_8BCXjRQ2fyNmmaiyDDj4FDED2HNk1mRtvMZEX239u56UFQPL2XH8_Dy4PQCSUjSghcNqEZQUaB7aAh5QAJcMl20ZAIRpKUSjZABzHOCSFSCraPBpDlAIKQIbp6fjXYNQsflkWrDfYWax-C0UvXzrD1AUc3a4saV8HZJXYtrpy1XXS-xdOnyRHas0UdzfH2HqKX25vn8X3y8Hg3GV8_JJpTzpK0gjIvM0PyyvJSWiaNTjW3JZc5qXhZiMpAQTnJbKW5oAJ0LiCDQpQkz6xOD9H5JncR_Ftn4lI1LmpT10VrfBcVzfuPc86A_INClvWSs56e_aBz34X-26gAZMoYZ1L-pfpakFymYl17sVE6-BiDsWoRXFOElaJErVdS_Urqc6Xenm4Tu7Ix1bf8mqUHlxvw7mqz-j1JTZ-mm8gPmAKYlA</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Vos, Sjoerd B.</creator><creator>Tax, Chantal M. W.</creator><creator>Luijten, Peter R.</creator><creator>Ourselin, Sebastien</creator><creator>Leemans, Alexander</creator><creator>Froeling, Martijn</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201701</creationdate><title>The importance of correcting for signal drift in diffusion MRI</title><author>Vos, Sjoerd B. ; Tax, Chantal M. W. ; Luijten, Peter R. ; Ourselin, Sebastien ; Leemans, Alexander ; Froeling, Martijn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>artefact correction</topic><topic>Brain - diagnostic imaging</topic><topic>Data analysis</topic><topic>Diffusion effects</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion tensor imaging</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Drift</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>fiber tractography</topic><topic>high angular resolution diffusion imaging</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Kurtosis</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Nerve Fibers - physiology</topic><topic>Parameter estimation</topic><topic>Phantoms, Imaging</topic><topic>Resonance</topic><topic>Scanners</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Stability analysis</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vos, Sjoerd B.</creatorcontrib><creatorcontrib>Tax, Chantal M. W.</creatorcontrib><creatorcontrib>Luijten, Peter R.</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Leemans, Alexander</creatorcontrib><creatorcontrib>Froeling, Martijn</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vos, Sjoerd B.</au><au>Tax, Chantal M. W.</au><au>Luijten, Peter R.</au><au>Ourselin, Sebastien</au><au>Leemans, Alexander</au><au>Froeling, Martijn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The importance of correcting for signal drift in diffusion MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2017-01</date><risdate>2017</risdate><volume>77</volume><issue>1</issue><spage>285</spage><epage>299</epage><pages>285-299</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose
To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift.
Methods
We investigated the signal magnitude of non‐diffusion‐weighted EPI volumes in a series of diffusion‐weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated.
Results
Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15‐min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan.
Conclusion
By interspersing the non‐diffusion‐weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285–299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>26822700</pmid><doi>10.1002/mrm.26124</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2017-01, Vol.77 (1), p.285-299 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859485420 |
source | Wiley |
subjects | Anisotropy artefact correction Brain - diagnostic imaging Data analysis Diffusion effects Diffusion Magnetic Resonance Imaging - methods diffusion tensor imaging Diffusion Tensor Imaging - methods Drift Eigenvalues Eigenvectors fiber tractography high angular resolution diffusion imaging Humans Image acquisition Image Processing, Computer-Assisted - methods Kurtosis Magnetic resonance imaging Medicine Nerve Fibers - physiology Parameter estimation Phantoms, Imaging Resonance Scanners Signal Processing, Computer-Assisted Stability analysis Tensors |
title | The importance of correcting for signal drift in diffusion MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20importance%20of%20correcting%20for%20signal%20drift%20in%20diffusion%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Vos,%20Sjoerd%20B.&rft.date=2017-01&rft.volume=77&rft.issue=1&rft.spage=285&rft.epage=299&rft.pages=285-299&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.26124&rft_dat=%3Cproquest_cross%3E4287203431%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5154-3d2b8b6e08df5b9f49ec3c5fb5980d5ba7de2a1506fdc57172c87262a7b086fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1852959370&rft_id=info:pmid/26822700&rfr_iscdi=true |