Loading…

Targeted clinical control of trauma patient coagulation through a thrombin dynamics model

We present a methodology for personalizing the clinical treatment of severely injured patients with acute traumatic coagulopathy (ATC), an endogenous biological response of impaired coagulation that occurs early after trauma and shock and that is associated with increased bleeding, morbidity, and mo...

Full description

Saved in:
Bibliographic Details
Published in:Science translational medicine 2017-01, Vol.9 (371)
Main Authors: Menezes, Amor A, Vilardi, Ryan F, Arkin, Adam P, Cohen, Mitchell J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-6f9341d9ae83996f7d2c1edc1090b12e6ad3ea7f75249bc008f2f85254d25c233
cites cdi_FETCH-LOGICAL-c340t-6f9341d9ae83996f7d2c1edc1090b12e6ad3ea7f75249bc008f2f85254d25c233
container_end_page
container_issue 371
container_start_page
container_title Science translational medicine
container_volume 9
creator Menezes, Amor A
Vilardi, Ryan F
Arkin, Adam P
Cohen, Mitchell J
description We present a methodology for personalizing the clinical treatment of severely injured patients with acute traumatic coagulopathy (ATC), an endogenous biological response of impaired coagulation that occurs early after trauma and shock and that is associated with increased bleeding, morbidity, and mortality. Despite biological characterization of ATC, it is not easily or rapidly diagnosed, not always captured by slow laboratory testing, and not accurately represented by coagulation models. This lack of knowledge, combined with the inherent time pressures of trauma treatment, forces surgeons to treat ATC patients according to empirical resuscitation protocols. These entail transfusing large volumes of poorly characterized, nontargeted blood products that are not tailored to an individual, the injury, or coagulation dynamics. Massive transfusion mortality remains at 40 to 70% in the best of trauma centers. As an alternative to blunt treatments, time-consuming tests, and mechanistic models, we used dynamical systems theory to create a simple, biologically meaningful, and highly accurate model that (i) quickly forecasts a driver of downstream coagulation, thrombin concentration after tissue factor stimulation, using rapidly measurable concentrations of blood protein factors and (ii) determines the amounts of additional coagulation factors needed to rectify the predicted thrombin dynamics and potentially remedy ATC. We successfully demonstrate in vitro thrombin control consistent with the model. Compared to another model, we decreased the mean errors in two key trauma patient parameters: peak thrombin concentration after tissue factor stimulation and the time until this peak occurs. Our methodology helps to advance individualized resuscitation of trauma-induced coagulation deficits.
doi_str_mv 10.1126/scitranslmed.aaf5045
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859487678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859487678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6f9341d9ae83996f7d2c1edc1090b12e6ad3ea7f75249bc008f2f85254d25c233</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqXwBwh5ySbF7zhLVPGSKrEpC1aR40dr5MTFThb9e1LaIlZzZ-bOXOkAcIvRHGMiHrL2fVJdDq01c6UcR4yfgSmumCgEYeT8T1M2AVc5fyEkJOXiEkyIRJxiLqbgc6XS2vbWQB1857UKUMeuTzHA6OAYMLQKblXvbdePG7UewtjEDvabFIf1Bqpf1Ta-g2bXqdbrDNtobLgGF06FbG-OdQY-np9Wi9di-f7ytnhcFpoy1BfCVZRhUykraVUJVxqisTUaowo1mFihDLWqdCUnrGo0QtIRJznhzBCuCaUzcH_4u03xe7C5r1uftQ1BdTYOucaSV0yWopSjlR2sOsWck3X1NvlWpV2NUb2HWv-HWh-hjmd3x4Sh2c9PRyeK9AfIyHjq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859487678</pqid></control><display><type>article</type><title>Targeted clinical control of trauma patient coagulation through a thrombin dynamics model</title><source>Alma/SFX Local Collection</source><creator>Menezes, Amor A ; Vilardi, Ryan F ; Arkin, Adam P ; Cohen, Mitchell J</creator><creatorcontrib>Menezes, Amor A ; Vilardi, Ryan F ; Arkin, Adam P ; Cohen, Mitchell J</creatorcontrib><description>We present a methodology for personalizing the clinical treatment of severely injured patients with acute traumatic coagulopathy (ATC), an endogenous biological response of impaired coagulation that occurs early after trauma and shock and that is associated with increased bleeding, morbidity, and mortality. Despite biological characterization of ATC, it is not easily or rapidly diagnosed, not always captured by slow laboratory testing, and not accurately represented by coagulation models. This lack of knowledge, combined with the inherent time pressures of trauma treatment, forces surgeons to treat ATC patients according to empirical resuscitation protocols. These entail transfusing large volumes of poorly characterized, nontargeted blood products that are not tailored to an individual, the injury, or coagulation dynamics. Massive transfusion mortality remains at 40 to 70% in the best of trauma centers. As an alternative to blunt treatments, time-consuming tests, and mechanistic models, we used dynamical systems theory to create a simple, biologically meaningful, and highly accurate model that (i) quickly forecasts a driver of downstream coagulation, thrombin concentration after tissue factor stimulation, using rapidly measurable concentrations of blood protein factors and (ii) determines the amounts of additional coagulation factors needed to rectify the predicted thrombin dynamics and potentially remedy ATC. We successfully demonstrate in vitro thrombin control consistent with the model. Compared to another model, we decreased the mean errors in two key trauma patient parameters: peak thrombin concentration after tissue factor stimulation and the time until this peak occurs. Our methodology helps to advance individualized resuscitation of trauma-induced coagulation deficits.</description><identifier>ISSN: 1946-6234</identifier><identifier>EISSN: 1946-6242</identifier><identifier>DOI: 10.1126/scitranslmed.aaf5045</identifier><identifier>PMID: 28053156</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Aged ; Blood Coagulation ; Blood Coagulation Disorders - therapy ; Blood Transfusion ; Calibration ; Female ; Hemorrhage ; Humans ; Male ; Middle Aged ; Prospective Studies ; Thrombin - chemistry ; Thrombin - metabolism ; Thromboplastin - metabolism ; Thrombosis ; Treatment Outcome ; Wounds and Injuries - therapy</subject><ispartof>Science translational medicine, 2017-01, Vol.9 (371)</ispartof><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6f9341d9ae83996f7d2c1edc1090b12e6ad3ea7f75249bc008f2f85254d25c233</citedby><cites>FETCH-LOGICAL-c340t-6f9341d9ae83996f7d2c1edc1090b12e6ad3ea7f75249bc008f2f85254d25c233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28053156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menezes, Amor A</creatorcontrib><creatorcontrib>Vilardi, Ryan F</creatorcontrib><creatorcontrib>Arkin, Adam P</creatorcontrib><creatorcontrib>Cohen, Mitchell J</creatorcontrib><title>Targeted clinical control of trauma patient coagulation through a thrombin dynamics model</title><title>Science translational medicine</title><addtitle>Sci Transl Med</addtitle><description>We present a methodology for personalizing the clinical treatment of severely injured patients with acute traumatic coagulopathy (ATC), an endogenous biological response of impaired coagulation that occurs early after trauma and shock and that is associated with increased bleeding, morbidity, and mortality. Despite biological characterization of ATC, it is not easily or rapidly diagnosed, not always captured by slow laboratory testing, and not accurately represented by coagulation models. This lack of knowledge, combined with the inherent time pressures of trauma treatment, forces surgeons to treat ATC patients according to empirical resuscitation protocols. These entail transfusing large volumes of poorly characterized, nontargeted blood products that are not tailored to an individual, the injury, or coagulation dynamics. Massive transfusion mortality remains at 40 to 70% in the best of trauma centers. As an alternative to blunt treatments, time-consuming tests, and mechanistic models, we used dynamical systems theory to create a simple, biologically meaningful, and highly accurate model that (i) quickly forecasts a driver of downstream coagulation, thrombin concentration after tissue factor stimulation, using rapidly measurable concentrations of blood protein factors and (ii) determines the amounts of additional coagulation factors needed to rectify the predicted thrombin dynamics and potentially remedy ATC. We successfully demonstrate in vitro thrombin control consistent with the model. Compared to another model, we decreased the mean errors in two key trauma patient parameters: peak thrombin concentration after tissue factor stimulation and the time until this peak occurs. Our methodology helps to advance individualized resuscitation of trauma-induced coagulation deficits.</description><subject>Adult</subject><subject>Aged</subject><subject>Blood Coagulation</subject><subject>Blood Coagulation Disorders - therapy</subject><subject>Blood Transfusion</subject><subject>Calibration</subject><subject>Female</subject><subject>Hemorrhage</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prospective Studies</subject><subject>Thrombin - chemistry</subject><subject>Thrombin - metabolism</subject><subject>Thromboplastin - metabolism</subject><subject>Thrombosis</subject><subject>Treatment Outcome</subject><subject>Wounds and Injuries - therapy</subject><issn>1946-6234</issn><issn>1946-6242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EoqXwBwh5ySbF7zhLVPGSKrEpC1aR40dr5MTFThb9e1LaIlZzZ-bOXOkAcIvRHGMiHrL2fVJdDq01c6UcR4yfgSmumCgEYeT8T1M2AVc5fyEkJOXiEkyIRJxiLqbgc6XS2vbWQB1857UKUMeuTzHA6OAYMLQKblXvbdePG7UewtjEDvabFIf1Bqpf1Ta-g2bXqdbrDNtobLgGF06FbG-OdQY-np9Wi9di-f7ytnhcFpoy1BfCVZRhUykraVUJVxqisTUaowo1mFihDLWqdCUnrGo0QtIRJznhzBCuCaUzcH_4u03xe7C5r1uftQ1BdTYOucaSV0yWopSjlR2sOsWck3X1NvlWpV2NUb2HWv-HWh-hjmd3x4Sh2c9PRyeK9AfIyHjq</recordid><startdate>20170104</startdate><enddate>20170104</enddate><creator>Menezes, Amor A</creator><creator>Vilardi, Ryan F</creator><creator>Arkin, Adam P</creator><creator>Cohen, Mitchell J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20170104</creationdate><title>Targeted clinical control of trauma patient coagulation through a thrombin dynamics model</title><author>Menezes, Amor A ; Vilardi, Ryan F ; Arkin, Adam P ; Cohen, Mitchell J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6f9341d9ae83996f7d2c1edc1090b12e6ad3ea7f75249bc008f2f85254d25c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Blood Coagulation</topic><topic>Blood Coagulation Disorders - therapy</topic><topic>Blood Transfusion</topic><topic>Calibration</topic><topic>Female</topic><topic>Hemorrhage</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prospective Studies</topic><topic>Thrombin - chemistry</topic><topic>Thrombin - metabolism</topic><topic>Thromboplastin - metabolism</topic><topic>Thrombosis</topic><topic>Treatment Outcome</topic><topic>Wounds and Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menezes, Amor A</creatorcontrib><creatorcontrib>Vilardi, Ryan F</creatorcontrib><creatorcontrib>Arkin, Adam P</creatorcontrib><creatorcontrib>Cohen, Mitchell J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Science translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menezes, Amor A</au><au>Vilardi, Ryan F</au><au>Arkin, Adam P</au><au>Cohen, Mitchell J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted clinical control of trauma patient coagulation through a thrombin dynamics model</atitle><jtitle>Science translational medicine</jtitle><addtitle>Sci Transl Med</addtitle><date>2017-01-04</date><risdate>2017</risdate><volume>9</volume><issue>371</issue><issn>1946-6234</issn><eissn>1946-6242</eissn><abstract>We present a methodology for personalizing the clinical treatment of severely injured patients with acute traumatic coagulopathy (ATC), an endogenous biological response of impaired coagulation that occurs early after trauma and shock and that is associated with increased bleeding, morbidity, and mortality. Despite biological characterization of ATC, it is not easily or rapidly diagnosed, not always captured by slow laboratory testing, and not accurately represented by coagulation models. This lack of knowledge, combined with the inherent time pressures of trauma treatment, forces surgeons to treat ATC patients according to empirical resuscitation protocols. These entail transfusing large volumes of poorly characterized, nontargeted blood products that are not tailored to an individual, the injury, or coagulation dynamics. Massive transfusion mortality remains at 40 to 70% in the best of trauma centers. As an alternative to blunt treatments, time-consuming tests, and mechanistic models, we used dynamical systems theory to create a simple, biologically meaningful, and highly accurate model that (i) quickly forecasts a driver of downstream coagulation, thrombin concentration after tissue factor stimulation, using rapidly measurable concentrations of blood protein factors and (ii) determines the amounts of additional coagulation factors needed to rectify the predicted thrombin dynamics and potentially remedy ATC. We successfully demonstrate in vitro thrombin control consistent with the model. Compared to another model, we decreased the mean errors in two key trauma patient parameters: peak thrombin concentration after tissue factor stimulation and the time until this peak occurs. Our methodology helps to advance individualized resuscitation of trauma-induced coagulation deficits.</abstract><cop>United States</cop><pmid>28053156</pmid><doi>10.1126/scitranslmed.aaf5045</doi></addata></record>
fulltext fulltext
identifier ISSN: 1946-6234
ispartof Science translational medicine, 2017-01, Vol.9 (371)
issn 1946-6234
1946-6242
language eng
recordid cdi_proquest_miscellaneous_1859487678
source Alma/SFX Local Collection
subjects Adult
Aged
Blood Coagulation
Blood Coagulation Disorders - therapy
Blood Transfusion
Calibration
Female
Hemorrhage
Humans
Male
Middle Aged
Prospective Studies
Thrombin - chemistry
Thrombin - metabolism
Thromboplastin - metabolism
Thrombosis
Treatment Outcome
Wounds and Injuries - therapy
title Targeted clinical control of trauma patient coagulation through a thrombin dynamics model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20clinical%20control%20of%20trauma%20patient%20coagulation%20through%20a%20thrombin%20dynamics%20model&rft.jtitle=Science%20translational%20medicine&rft.au=Menezes,%20Amor%20A&rft.date=2017-01-04&rft.volume=9&rft.issue=371&rft.issn=1946-6234&rft.eissn=1946-6242&rft_id=info:doi/10.1126/scitranslmed.aaf5045&rft_dat=%3Cproquest_cross%3E1859487678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-6f9341d9ae83996f7d2c1edc1090b12e6ad3ea7f75249bc008f2f85254d25c233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859487678&rft_id=info:pmid/28053156&rfr_iscdi=true