Loading…

Enhanced Dissolved Organic Matter Recovery from Saltwater Samples with Electrodialysis

Complexities associated with dissolved organic matter (DOM) isolation from seawater have hampered compositional characterization of this key component of global carbon and nutrient cycles. DOM isolation efficiency by electrodialysis (ED) from salt-containing waters was optimized and evaluated on sam...

Full description

Saved in:
Bibliographic Details
Published in:Aquatic geochemistry 2016-12, Vol.22 (5-6), p.555-572
Main Authors: Chambers, Luke R., Ingall, Ellery D., Saad, Emily M., Longo, Amelia F., Takeuchi, Masayuki, Tang, Yuanzhi, Benitez-Nelson, Claudia, Haley, Sheean T., Dyhrman, Sonya T., Brandes, Jay, Stubbins, Aron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-664081f8507acd90d4b46b788a9b2405771892e32102048b436f89662e4b5cb53
cites cdi_FETCH-LOGICAL-c349t-664081f8507acd90d4b46b788a9b2405771892e32102048b436f89662e4b5cb53
container_end_page 572
container_issue 5-6
container_start_page 555
container_title Aquatic geochemistry
container_volume 22
creator Chambers, Luke R.
Ingall, Ellery D.
Saad, Emily M.
Longo, Amelia F.
Takeuchi, Masayuki
Tang, Yuanzhi
Benitez-Nelson, Claudia
Haley, Sheean T.
Dyhrman, Sonya T.
Brandes, Jay
Stubbins, Aron
description Complexities associated with dissolved organic matter (DOM) isolation from seawater have hampered compositional characterization of this key component of global carbon and nutrient cycles. DOM isolation efficiency by electrodialysis (ED) from salt-containing waters was optimized and evaluated on samples including coastal ocean seawater, open ocean seawater, artificial seawater from axenic cultures of marine phytoplankton, and artificial seawater samples containing standard compounds of different molecular sizes and charge. ED was performed with a system optimized for processing 2–10 L sample volumes. Additionally, the combination of ED and solid-phase extraction, using Bond Elut PPL exchange resin, was evaluated. Using only ED, the following DOC recoveries were achieved: coastal seawater, 71.3 ± 6.5 %; open ocean, 50.5 ± 3.1 %; phytoplankton cultures, 70.3 ± 12.5 %; glucose, 90.2 ± 2.1 %; EDTA, 67.5 ± 9.9 %; and vitamin B 12 , 98.3 ± 1.6 %. With the combination of PPL and ED techniques, an average DOC recovery of 76.7 ± 2.6 % was obtained for coastal seawater, but this recovery was not statistically different from seawater recoveries using only ED. Comparison of C/N ratios and fluorescence excitation emission matrices taken at the beginning and end of the recovery process for coastal samples processed using only ED indicated that the final recovered material was representative of the DOM present in the original samples. Typical recoveries using combined PPL and ED exceed those of previous isolation methods.
doi_str_mv 10.1007/s10498-016-9306-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859497160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859497160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-664081f8507acd90d4b46b788a9b2405771892e32102048b436f89662e4b5cb53</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMoOKc_wLuCN95E36RpPi5lzg9QBk69DWmabh1dM5NuY__elnohglfv4eU5h8NB6JLADQEQt5EAUxID4VilwDE9QiOSiRQTRslxp1MJmBOenaKzGFcAhACFEfqcNkvTWFck91WMvt51ahYWpqls8mra1oXkzVm_c-GQlMGvk7mp273p_3Oz3tQuJvuqXSbT2tk2-KIy9SFW8RydlKaO7uLnjtHHw_R98oRfZo_Pk7sXbFOmWsw5A0lKmYEwtlBQsJzxXEhpVE4ZZEIQqahLaV-WyZylvJSKc-pYntk8S8foesjdBP-1dbHV6ypaV9emcX4bNZGZYkoQDh169Qdd-W1ounY9BVQJkD1FBsoGH2Nwpd6Eam3CQRPQ_dJ6WFp3S-t-aU07Dx08sWObhQu_kv81fQMStn81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850297080</pqid></control><display><type>article</type><title>Enhanced Dissolved Organic Matter Recovery from Saltwater Samples with Electrodialysis</title><source>Springer Link</source><creator>Chambers, Luke R. ; Ingall, Ellery D. ; Saad, Emily M. ; Longo, Amelia F. ; Takeuchi, Masayuki ; Tang, Yuanzhi ; Benitez-Nelson, Claudia ; Haley, Sheean T. ; Dyhrman, Sonya T. ; Brandes, Jay ; Stubbins, Aron</creator><creatorcontrib>Chambers, Luke R. ; Ingall, Ellery D. ; Saad, Emily M. ; Longo, Amelia F. ; Takeuchi, Masayuki ; Tang, Yuanzhi ; Benitez-Nelson, Claudia ; Haley, Sheean T. ; Dyhrman, Sonya T. ; Brandes, Jay ; Stubbins, Aron</creatorcontrib><description>Complexities associated with dissolved organic matter (DOM) isolation from seawater have hampered compositional characterization of this key component of global carbon and nutrient cycles. DOM isolation efficiency by electrodialysis (ED) from salt-containing waters was optimized and evaluated on samples including coastal ocean seawater, open ocean seawater, artificial seawater from axenic cultures of marine phytoplankton, and artificial seawater samples containing standard compounds of different molecular sizes and charge. ED was performed with a system optimized for processing 2–10 L sample volumes. Additionally, the combination of ED and solid-phase extraction, using Bond Elut PPL exchange resin, was evaluated. Using only ED, the following DOC recoveries were achieved: coastal seawater, 71.3 ± 6.5 %; open ocean, 50.5 ± 3.1 %; phytoplankton cultures, 70.3 ± 12.5 %; glucose, 90.2 ± 2.1 %; EDTA, 67.5 ± 9.9 %; and vitamin B 12 , 98.3 ± 1.6 %. With the combination of PPL and ED techniques, an average DOC recovery of 76.7 ± 2.6 % was obtained for coastal seawater, but this recovery was not statistically different from seawater recoveries using only ED. Comparison of C/N ratios and fluorescence excitation emission matrices taken at the beginning and end of the recovery process for coastal samples processed using only ED indicated that the final recovered material was representative of the DOM present in the original samples. Typical recoveries using combined PPL and ED exceed those of previous isolation methods.</description><identifier>ISSN: 1380-6165</identifier><identifier>EISSN: 1573-1421</identifier><identifier>DOI: 10.1007/s10498-016-9306-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial seawater ; Carbon ; Chemical analysis ; Dissolved organic matter ; Earth and Environmental Science ; Earth Sciences ; Electrodialysis ; Geochemistry ; Hydrogeology ; Hydrology/Water Resources ; Marine ; Matter &amp; antimatter ; Nutrient cycles ; Nutrients ; Organic chemicals ; Original Paper ; Phytoplankton ; Saline water ; Seawater ; Water analysis ; Water Quality/Water Pollution</subject><ispartof>Aquatic geochemistry, 2016-12, Vol.22 (5-6), p.555-572</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Aquatic Geochemistry is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-664081f8507acd90d4b46b788a9b2405771892e32102048b436f89662e4b5cb53</citedby><cites>FETCH-LOGICAL-c349t-664081f8507acd90d4b46b788a9b2405771892e32102048b436f89662e4b5cb53</cites><orcidid>0000-0003-1954-0317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chambers, Luke R.</creatorcontrib><creatorcontrib>Ingall, Ellery D.</creatorcontrib><creatorcontrib>Saad, Emily M.</creatorcontrib><creatorcontrib>Longo, Amelia F.</creatorcontrib><creatorcontrib>Takeuchi, Masayuki</creatorcontrib><creatorcontrib>Tang, Yuanzhi</creatorcontrib><creatorcontrib>Benitez-Nelson, Claudia</creatorcontrib><creatorcontrib>Haley, Sheean T.</creatorcontrib><creatorcontrib>Dyhrman, Sonya T.</creatorcontrib><creatorcontrib>Brandes, Jay</creatorcontrib><creatorcontrib>Stubbins, Aron</creatorcontrib><title>Enhanced Dissolved Organic Matter Recovery from Saltwater Samples with Electrodialysis</title><title>Aquatic geochemistry</title><addtitle>Aquat Geochem</addtitle><description>Complexities associated with dissolved organic matter (DOM) isolation from seawater have hampered compositional characterization of this key component of global carbon and nutrient cycles. DOM isolation efficiency by electrodialysis (ED) from salt-containing waters was optimized and evaluated on samples including coastal ocean seawater, open ocean seawater, artificial seawater from axenic cultures of marine phytoplankton, and artificial seawater samples containing standard compounds of different molecular sizes and charge. ED was performed with a system optimized for processing 2–10 L sample volumes. Additionally, the combination of ED and solid-phase extraction, using Bond Elut PPL exchange resin, was evaluated. Using only ED, the following DOC recoveries were achieved: coastal seawater, 71.3 ± 6.5 %; open ocean, 50.5 ± 3.1 %; phytoplankton cultures, 70.3 ± 12.5 %; glucose, 90.2 ± 2.1 %; EDTA, 67.5 ± 9.9 %; and vitamin B 12 , 98.3 ± 1.6 %. With the combination of PPL and ED techniques, an average DOC recovery of 76.7 ± 2.6 % was obtained for coastal seawater, but this recovery was not statistically different from seawater recoveries using only ED. Comparison of C/N ratios and fluorescence excitation emission matrices taken at the beginning and end of the recovery process for coastal samples processed using only ED indicated that the final recovered material was representative of the DOM present in the original samples. Typical recoveries using combined PPL and ED exceed those of previous isolation methods.</description><subject>Artificial seawater</subject><subject>Carbon</subject><subject>Chemical analysis</subject><subject>Dissolved organic matter</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrodialysis</subject><subject>Geochemistry</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Marine</subject><subject>Matter &amp; antimatter</subject><subject>Nutrient cycles</subject><subject>Nutrients</subject><subject>Organic chemicals</subject><subject>Original Paper</subject><subject>Phytoplankton</subject><subject>Saline water</subject><subject>Seawater</subject><subject>Water analysis</subject><subject>Water Quality/Water Pollution</subject><issn>1380-6165</issn><issn>1573-1421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAYhYMoOKc_wLuCN95E36RpPi5lzg9QBk69DWmabh1dM5NuY__elnohglfv4eU5h8NB6JLADQEQt5EAUxID4VilwDE9QiOSiRQTRslxp1MJmBOenaKzGFcAhACFEfqcNkvTWFck91WMvt51ahYWpqls8mra1oXkzVm_c-GQlMGvk7mp273p_3Oz3tQuJvuqXSbT2tk2-KIy9SFW8RydlKaO7uLnjtHHw_R98oRfZo_Pk7sXbFOmWsw5A0lKmYEwtlBQsJzxXEhpVE4ZZEIQqahLaV-WyZylvJSKc-pYntk8S8foesjdBP-1dbHV6ypaV9emcX4bNZGZYkoQDh169Qdd-W1ounY9BVQJkD1FBsoGH2Nwpd6Eam3CQRPQ_dJ6WFp3S-t-aU07Dx08sWObhQu_kv81fQMStn81</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Chambers, Luke R.</creator><creator>Ingall, Ellery D.</creator><creator>Saad, Emily M.</creator><creator>Longo, Amelia F.</creator><creator>Takeuchi, Masayuki</creator><creator>Tang, Yuanzhi</creator><creator>Benitez-Nelson, Claudia</creator><creator>Haley, Sheean T.</creator><creator>Dyhrman, Sonya T.</creator><creator>Brandes, Jay</creator><creator>Stubbins, Aron</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1954-0317</orcidid></search><sort><creationdate>20161201</creationdate><title>Enhanced Dissolved Organic Matter Recovery from Saltwater Samples with Electrodialysis</title><author>Chambers, Luke R. ; Ingall, Ellery D. ; Saad, Emily M. ; Longo, Amelia F. ; Takeuchi, Masayuki ; Tang, Yuanzhi ; Benitez-Nelson, Claudia ; Haley, Sheean T. ; Dyhrman, Sonya T. ; Brandes, Jay ; Stubbins, Aron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-664081f8507acd90d4b46b788a9b2405771892e32102048b436f89662e4b5cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial seawater</topic><topic>Carbon</topic><topic>Chemical analysis</topic><topic>Dissolved organic matter</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrodialysis</topic><topic>Geochemistry</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Marine</topic><topic>Matter &amp; antimatter</topic><topic>Nutrient cycles</topic><topic>Nutrients</topic><topic>Organic chemicals</topic><topic>Original Paper</topic><topic>Phytoplankton</topic><topic>Saline water</topic><topic>Seawater</topic><topic>Water analysis</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chambers, Luke R.</creatorcontrib><creatorcontrib>Ingall, Ellery D.</creatorcontrib><creatorcontrib>Saad, Emily M.</creatorcontrib><creatorcontrib>Longo, Amelia F.</creatorcontrib><creatorcontrib>Takeuchi, Masayuki</creatorcontrib><creatorcontrib>Tang, Yuanzhi</creatorcontrib><creatorcontrib>Benitez-Nelson, Claudia</creatorcontrib><creatorcontrib>Haley, Sheean T.</creatorcontrib><creatorcontrib>Dyhrman, Sonya T.</creatorcontrib><creatorcontrib>Brandes, Jay</creatorcontrib><creatorcontrib>Stubbins, Aron</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aquatic geochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chambers, Luke R.</au><au>Ingall, Ellery D.</au><au>Saad, Emily M.</au><au>Longo, Amelia F.</au><au>Takeuchi, Masayuki</au><au>Tang, Yuanzhi</au><au>Benitez-Nelson, Claudia</au><au>Haley, Sheean T.</au><au>Dyhrman, Sonya T.</au><au>Brandes, Jay</au><au>Stubbins, Aron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Dissolved Organic Matter Recovery from Saltwater Samples with Electrodialysis</atitle><jtitle>Aquatic geochemistry</jtitle><stitle>Aquat Geochem</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>22</volume><issue>5-6</issue><spage>555</spage><epage>572</epage><pages>555-572</pages><issn>1380-6165</issn><eissn>1573-1421</eissn><abstract>Complexities associated with dissolved organic matter (DOM) isolation from seawater have hampered compositional characterization of this key component of global carbon and nutrient cycles. DOM isolation efficiency by electrodialysis (ED) from salt-containing waters was optimized and evaluated on samples including coastal ocean seawater, open ocean seawater, artificial seawater from axenic cultures of marine phytoplankton, and artificial seawater samples containing standard compounds of different molecular sizes and charge. ED was performed with a system optimized for processing 2–10 L sample volumes. Additionally, the combination of ED and solid-phase extraction, using Bond Elut PPL exchange resin, was evaluated. Using only ED, the following DOC recoveries were achieved: coastal seawater, 71.3 ± 6.5 %; open ocean, 50.5 ± 3.1 %; phytoplankton cultures, 70.3 ± 12.5 %; glucose, 90.2 ± 2.1 %; EDTA, 67.5 ± 9.9 %; and vitamin B 12 , 98.3 ± 1.6 %. With the combination of PPL and ED techniques, an average DOC recovery of 76.7 ± 2.6 % was obtained for coastal seawater, but this recovery was not statistically different from seawater recoveries using only ED. Comparison of C/N ratios and fluorescence excitation emission matrices taken at the beginning and end of the recovery process for coastal samples processed using only ED indicated that the final recovered material was representative of the DOM present in the original samples. Typical recoveries using combined PPL and ED exceed those of previous isolation methods.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10498-016-9306-2</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1954-0317</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-6165
ispartof Aquatic geochemistry, 2016-12, Vol.22 (5-6), p.555-572
issn 1380-6165
1573-1421
language eng
recordid cdi_proquest_miscellaneous_1859497160
source Springer Link
subjects Artificial seawater
Carbon
Chemical analysis
Dissolved organic matter
Earth and Environmental Science
Earth Sciences
Electrodialysis
Geochemistry
Hydrogeology
Hydrology/Water Resources
Marine
Matter & antimatter
Nutrient cycles
Nutrients
Organic chemicals
Original Paper
Phytoplankton
Saline water
Seawater
Water analysis
Water Quality/Water Pollution
title Enhanced Dissolved Organic Matter Recovery from Saltwater Samples with Electrodialysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Dissolved%20Organic%20Matter%20Recovery%20from%20Saltwater%20Samples%20with%20Electrodialysis&rft.jtitle=Aquatic%20geochemistry&rft.au=Chambers,%20Luke%20R.&rft.date=2016-12-01&rft.volume=22&rft.issue=5-6&rft.spage=555&rft.epage=572&rft.pages=555-572&rft.issn=1380-6165&rft.eissn=1573-1421&rft_id=info:doi/10.1007/s10498-016-9306-2&rft_dat=%3Cproquest_cross%3E1859497160%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-664081f8507acd90d4b46b788a9b2405771892e32102048b436f89662e4b5cb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1850297080&rft_id=info:pmid/&rfr_iscdi=true