Loading…
The Spatial Representation of Angles
We investigated whether angle magnitude, similarly to numerical quantities (i.e., the spatial-numerical association of response codes effect), is associated to the side of response execution. In addition, we investigated whether this association has the properties of a spatially oriented mental line...
Saved in:
Published in: | Perception (London) 2016-11, Vol.45 (11), p.1320-1330 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-d8d8d21e51ef4c5aa7a95f30c223ccd9c1ac15e52346c5644b8747746761b2bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-d8d8d21e51ef4c5aa7a95f30c223ccd9c1ac15e52346c5644b8747746761b2bd3 |
container_end_page | 1330 |
container_issue | 11 |
container_start_page | 1320 |
container_title | Perception (London) |
container_volume | 45 |
creator | Fumarola, Antonia Prpic, Valter Fornasier, Deanna Sartoretto, Flavio Agostini, Tiziano Umiltà, Carlo |
description | We investigated whether angle magnitude, similarly to numerical quantities (i.e., the spatial-numerical association of response codes effect), is associated to the side of response execution. In addition, we investigated whether this association has the properties of a spatially oriented mental line, since angles are taught in a right-to-left progression. We tested two groups of participants: civil engineering students (high familiarity with angles) and psychology students (low familiarity with angles). In Experiment 1, participants were asked to judge the continuity of the angles’ arms (continuous vs. dashed). Magnitude of the angles was task-irrelevant. In Experiment 2, they were asked to judge whether the presented angles were smaller or larger than a right angle (90°). Therefore, the angle magnitude was relevant for performing the task. Overall, engineering students responded faster with their left hand to large angles and with their right hand to small angles. Conversely, psychology students did not show any reliable differences between left- and right-hand responses. In the case of engineering students, the spatial association has a right-to-left (counter clockwise) direction, suggesting the influence of education and practice on the mental representation of angle magnitude. |
doi_str_mv | 10.1177/0301006616661915 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859712942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0301006616661915</sage_id><sourcerecordid>1859712942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d8d8d21e51ef4c5aa7a95f30c223ccd9c1ac15e52346c5644b8747746761b2bd3</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUSxNXr3JDl48BLd2c_kWIpfUBC0npfNZlJb0iTuJgf_vVtaPQgyDDPDvPfgPUIugd4CaH1HOQVKlQIVuwB5RKYgVJ4Jxvkxme7e2e4_IWchbCgFUUh-SiZMxwVyMSXXyw9M33o7rG2TvmLvMWA7xLNr065OZ-2qwXBOTmrbBLw4zIS8P9wv50_Z4uXxeT5bZI7rYsiqPBYDlIC1cNJabQtZc-oY485VhQPrQKJkXCgnlRBlroXWQmkFJSsrnpCbvW7vu88Rw2C26-CwaWyL3RgM5LLQwIpoLyF0D3W-C8FjbXq_3lr_ZYCaXTbmbzaRcnVQH8stVr-EnzAiINsDgl2h2XSjb6Pb_wW_AZz-aSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859712942</pqid></control><display><type>article</type><title>The Spatial Representation of Angles</title><source>Sage Journals Online</source><creator>Fumarola, Antonia ; Prpic, Valter ; Fornasier, Deanna ; Sartoretto, Flavio ; Agostini, Tiziano ; Umiltà, Carlo</creator><creatorcontrib>Fumarola, Antonia ; Prpic, Valter ; Fornasier, Deanna ; Sartoretto, Flavio ; Agostini, Tiziano ; Umiltà, Carlo</creatorcontrib><description>We investigated whether angle magnitude, similarly to numerical quantities (i.e., the spatial-numerical association of response codes effect), is associated to the side of response execution. In addition, we investigated whether this association has the properties of a spatially oriented mental line, since angles are taught in a right-to-left progression. We tested two groups of participants: civil engineering students (high familiarity with angles) and psychology students (low familiarity with angles). In Experiment 1, participants were asked to judge the continuity of the angles’ arms (continuous vs. dashed). Magnitude of the angles was task-irrelevant. In Experiment 2, they were asked to judge whether the presented angles were smaller or larger than a right angle (90°). Therefore, the angle magnitude was relevant for performing the task. Overall, engineering students responded faster with their left hand to large angles and with their right hand to small angles. Conversely, psychology students did not show any reliable differences between left- and right-hand responses. In the case of engineering students, the spatial association has a right-to-left (counter clockwise) direction, suggesting the influence of education and practice on the mental representation of angle magnitude.</description><identifier>ISSN: 0301-0066</identifier><identifier>EISSN: 1468-4233</identifier><identifier>DOI: 10.1177/0301006616661915</identifier><identifier>PMID: 27495184</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Perception (London), 2016-11, Vol.45 (11), p.1320-1330</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d8d8d21e51ef4c5aa7a95f30c223ccd9c1ac15e52346c5644b8747746761b2bd3</citedby><cites>FETCH-LOGICAL-c379t-d8d8d21e51ef4c5aa7a95f30c223ccd9c1ac15e52346c5644b8747746761b2bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27495184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fumarola, Antonia</creatorcontrib><creatorcontrib>Prpic, Valter</creatorcontrib><creatorcontrib>Fornasier, Deanna</creatorcontrib><creatorcontrib>Sartoretto, Flavio</creatorcontrib><creatorcontrib>Agostini, Tiziano</creatorcontrib><creatorcontrib>Umiltà, Carlo</creatorcontrib><title>The Spatial Representation of Angles</title><title>Perception (London)</title><addtitle>Perception</addtitle><description>We investigated whether angle magnitude, similarly to numerical quantities (i.e., the spatial-numerical association of response codes effect), is associated to the side of response execution. In addition, we investigated whether this association has the properties of a spatially oriented mental line, since angles are taught in a right-to-left progression. We tested two groups of participants: civil engineering students (high familiarity with angles) and psychology students (low familiarity with angles). In Experiment 1, participants were asked to judge the continuity of the angles’ arms (continuous vs. dashed). Magnitude of the angles was task-irrelevant. In Experiment 2, they were asked to judge whether the presented angles were smaller or larger than a right angle (90°). Therefore, the angle magnitude was relevant for performing the task. Overall, engineering students responded faster with their left hand to large angles and with their right hand to small angles. Conversely, psychology students did not show any reliable differences between left- and right-hand responses. In the case of engineering students, the spatial association has a right-to-left (counter clockwise) direction, suggesting the influence of education and practice on the mental representation of angle magnitude.</description><issn>0301-0066</issn><issn>1468-4233</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQXUSxNXr3JDl48BLd2c_kWIpfUBC0npfNZlJb0iTuJgf_vVtaPQgyDDPDvPfgPUIugd4CaH1HOQVKlQIVuwB5RKYgVJ4Jxvkxme7e2e4_IWchbCgFUUh-SiZMxwVyMSXXyw9M33o7rG2TvmLvMWA7xLNr065OZ-2qwXBOTmrbBLw4zIS8P9wv50_Z4uXxeT5bZI7rYsiqPBYDlIC1cNJabQtZc-oY485VhQPrQKJkXCgnlRBlroXWQmkFJSsrnpCbvW7vu88Rw2C26-CwaWyL3RgM5LLQwIpoLyF0D3W-C8FjbXq_3lr_ZYCaXTbmbzaRcnVQH8stVr-EnzAiINsDgl2h2XSjb6Pb_wW_AZz-aSc</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Fumarola, Antonia</creator><creator>Prpic, Valter</creator><creator>Fornasier, Deanna</creator><creator>Sartoretto, Flavio</creator><creator>Agostini, Tiziano</creator><creator>Umiltà, Carlo</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201611</creationdate><title>The Spatial Representation of Angles</title><author>Fumarola, Antonia ; Prpic, Valter ; Fornasier, Deanna ; Sartoretto, Flavio ; Agostini, Tiziano ; Umiltà, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d8d8d21e51ef4c5aa7a95f30c223ccd9c1ac15e52346c5644b8747746761b2bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fumarola, Antonia</creatorcontrib><creatorcontrib>Prpic, Valter</creatorcontrib><creatorcontrib>Fornasier, Deanna</creatorcontrib><creatorcontrib>Sartoretto, Flavio</creatorcontrib><creatorcontrib>Agostini, Tiziano</creatorcontrib><creatorcontrib>Umiltà, Carlo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Perception (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fumarola, Antonia</au><au>Prpic, Valter</au><au>Fornasier, Deanna</au><au>Sartoretto, Flavio</au><au>Agostini, Tiziano</au><au>Umiltà, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Spatial Representation of Angles</atitle><jtitle>Perception (London)</jtitle><addtitle>Perception</addtitle><date>2016-11</date><risdate>2016</risdate><volume>45</volume><issue>11</issue><spage>1320</spage><epage>1330</epage><pages>1320-1330</pages><issn>0301-0066</issn><eissn>1468-4233</eissn><abstract>We investigated whether angle magnitude, similarly to numerical quantities (i.e., the spatial-numerical association of response codes effect), is associated to the side of response execution. In addition, we investigated whether this association has the properties of a spatially oriented mental line, since angles are taught in a right-to-left progression. We tested two groups of participants: civil engineering students (high familiarity with angles) and psychology students (low familiarity with angles). In Experiment 1, participants were asked to judge the continuity of the angles’ arms (continuous vs. dashed). Magnitude of the angles was task-irrelevant. In Experiment 2, they were asked to judge whether the presented angles were smaller or larger than a right angle (90°). Therefore, the angle magnitude was relevant for performing the task. Overall, engineering students responded faster with their left hand to large angles and with their right hand to small angles. Conversely, psychology students did not show any reliable differences between left- and right-hand responses. In the case of engineering students, the spatial association has a right-to-left (counter clockwise) direction, suggesting the influence of education and practice on the mental representation of angle magnitude.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>27495184</pmid><doi>10.1177/0301006616661915</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-0066 |
ispartof | Perception (London), 2016-11, Vol.45 (11), p.1320-1330 |
issn | 0301-0066 1468-4233 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859712942 |
source | Sage Journals Online |
title | The Spatial Representation of Angles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Spatial%20Representation%20of%20Angles&rft.jtitle=Perception%20(London)&rft.au=Fumarola,%20Antonia&rft.date=2016-11&rft.volume=45&rft.issue=11&rft.spage=1320&rft.epage=1330&rft.pages=1320-1330&rft.issn=0301-0066&rft.eissn=1468-4233&rft_id=info:doi/10.1177/0301006616661915&rft_dat=%3Cproquest_cross%3E1859712942%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-d8d8d21e51ef4c5aa7a95f30c223ccd9c1ac15e52346c5644b8747746761b2bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859712942&rft_id=info:pmid/27495184&rft_sage_id=10.1177_0301006616661915&rfr_iscdi=true |