Loading…

Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights

Carbon-based functional nanomaterials have attracted immense scientific interest from many disciplines and, due to their extraordinary properties, have offered tremendous potential in a diverse range of applications. Among the different carbon nanomaterials, graphene is one of the newest and is cons...

Full description

Saved in:
Bibliographic Details
Published in:Advanced drug delivery reviews 2016-10, Vol.105 (Pt B), p.145-162
Main Authors: Zhang, Bo, Wei, Peng, Zhou, Zhixiang, Wei, Taotao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon-based functional nanomaterials have attracted immense scientific interest from many disciplines and, due to their extraordinary properties, have offered tremendous potential in a diverse range of applications. Among the different carbon nanomaterials, graphene is one of the newest and is considered the most important. Graphene, a monolayer material composed of sp2-hybridized carbon atoms hexagonally arranged in a two-dimensional structure, can be easily functionalized by chemical modification. Functionalized graphene and its derivatives have been used in diverse nano-biotechnological applications, such as in environmental engineering, biomedicine, and biotechnology. However, the prospective use of graphene-related materials in a biological context requires a detailed comprehension of these materials, which is essential for expanding their biomedical applications in the future. In recent years, the number of biological studies involving graphene-related nanomaterials has rapidly increased. These studies have documented the effects of the biological interactions between graphene-related materials and different organizational levels of living systems, ranging from biomolecules to animals. In the present review, we will summarize the recent progress in understanding mainly the interactions between graphene and cells. The impact of graphene on intracellular components, and especially the uptake and transport of graphene by cells, will be discussed in detail. [Display omitted]
ISSN:0169-409X
1872-8294
DOI:10.1016/j.addr.2016.08.009