Loading…
Activatable fluorescence: From small molecule to nanoparticle
Molecular imaging has emerged as an indispensable technology in the development and application of drug delivery systems. Targeted imaging agents report the presence of biomolecules, including therapeutic targets and disease biomarkers, while the biological behaviour of labelled delivery systems can...
Saved in:
Published in: | Advanced drug delivery reviews 2017-04, Vol.113, p.97-121 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular imaging has emerged as an indispensable technology in the development and application of drug delivery systems. Targeted imaging agents report the presence of biomolecules, including therapeutic targets and disease biomarkers, while the biological behaviour of labelled delivery systems can be non-invasively assessed in real time. As an imaging modality, fluorescence offers additional signal specificity and dynamic information due to the inherent responsivity of fluorescence agents to interactions with other optical species and with their environment. Harnessing this responsivity is the basis of activatable fluorescence imaging, where interactions between an engineered fluorescence agent and its biological target induce a fluorogenic response. Small molecule activatable agents are frequently derivatives of common fluorophores designed to chemically react with their target. Macromolecular scale agents are useful for imaging proteins and nucleic acids, although their biological delivery can be difficult. Nanoscale activatable agents combine the responsivity of fluorophores with the unique optical and physical properties of nanomaterials. The molecular imaging application and overall complexity of biological target dictate the most advantageous fluorescence agent size scale and activation strategy.
[Display omitted] |
---|---|
ISSN: | 0169-409X 1872-8294 |
DOI: | 10.1016/j.addr.2016.08.010 |