Loading…

Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design

Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of arthroplasty 2017-02, Vol.32 (2), p.601-609
Main Authors: Small, Scott R., MS, Hensley, Sarah E., BS, Cook, Paige L., MEng, Stevens, Rebecca A., BS, Rogge, Renee D., PhD, Meding, John B, Berend, Michael E., MD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3
cites cdi_FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3
container_end_page 609
container_issue 2
container_start_page 601
container_title The Journal of arthroplasty
container_volume 32
creator Small, Scott R., MS
Hensley, Sarah E., BS
Cook, Paige L., MEng
Stevens, Rebecca A., BS
Rogge, Renee D., PhD
Meding, John B
Berend, Michael E., MD
description Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry, and (2) if short stemmed components exhibit primary stability on par with clinically successful designs. Methods Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion then compared with reduced lateral shoulder short stem, and short tapered-wedge designs in cyclic axial and torsional testing. Results Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as function of reduced stem length within the same component design. Conclusions Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.
doi_str_mv 10.1016/j.arth.2016.07.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859726608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0883540316304570</els_id><sourcerecordid>1859726608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYMo7rj6BXyQPvrSmj9N2oIIMrq6MCC4-hzS5GYns20yJunC-OlNndUHH4RAwsk5B-7vIvSS4IZgIt4cGhXzvqHl3eCuwYw9QhvCGa37FovHaIP7ntW8xewCPUvpgDEhnLdP0QXt-NC1jGzQ3XavotIZovupsgu-Cra6gjlENVXbMB-DB5-ra--yK8pNVqObXD5VypvyH7PTv-WonK_KUdVXMIsGUzSYqx3427yvPkByt_45emLVlODFw32Jvl99_Lb9XO--fLrevt_VuiUk10J31ghBe66EFUB6M4yDHUYzUAaD4Ra4toYbO1LVGmaIGQRYCkTzlkKn2SV6fe49xvBjgZTl7JKGaVIewpIk6cv0VAjcFys9W3UMKUWw8hjdrOJJEixXyPIgV8hyhSxxJwvkEnr10L-MM5i_kT9Ui-Ht2QBlynsHUSbtwBcqLoLO0gT3__53_8T15PwK-g5OkA5hib7wk0QmKrG8Wde8bpkIhlveYfYLN_WkRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859726608</pqid></control><display><type>article</type><title>Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design</title><source>ScienceDirect Freedom Collection</source><creator>Small, Scott R., MS ; Hensley, Sarah E., BS ; Cook, Paige L., MEng ; Stevens, Rebecca A., BS ; Rogge, Renee D., PhD ; Meding, John B ; Berend, Michael E., MD</creator><creatorcontrib>Small, Scott R., MS ; Hensley, Sarah E., BS ; Cook, Paige L., MEng ; Stevens, Rebecca A., BS ; Rogge, Renee D., PhD ; Meding, John B ; Berend, Michael E., MD</creatorcontrib><description>Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry, and (2) if short stemmed components exhibit primary stability on par with clinically successful designs. Methods Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion then compared with reduced lateral shoulder short stem, and short tapered-wedge designs in cyclic axial and torsional testing. Results Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as function of reduced stem length within the same component design. Conclusions Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.</description><identifier>ISSN: 0883-5403</identifier><identifier>EISSN: 1532-8406</identifier><identifier>DOI: 10.1016/j.arth.2016.07.033</identifier><identifier>PMID: 27597431</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>digital image correlation ; Femur - physiology ; Femur - surgery ; Hip Prosthesis ; Humans ; micromotion ; Orthopedics ; primary stability ; Prosthesis Design ; short stem ; Stress, Mechanical ; THA</subject><ispartof>The Journal of arthroplasty, 2017-02, Vol.32 (2), p.601-609</ispartof><rights>Elsevier Inc.</rights><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3</citedby><cites>FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27597431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Small, Scott R., MS</creatorcontrib><creatorcontrib>Hensley, Sarah E., BS</creatorcontrib><creatorcontrib>Cook, Paige L., MEng</creatorcontrib><creatorcontrib>Stevens, Rebecca A., BS</creatorcontrib><creatorcontrib>Rogge, Renee D., PhD</creatorcontrib><creatorcontrib>Meding, John B</creatorcontrib><creatorcontrib>Berend, Michael E., MD</creatorcontrib><title>Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design</title><title>The Journal of arthroplasty</title><addtitle>J Arthroplasty</addtitle><description>Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry, and (2) if short stemmed components exhibit primary stability on par with clinically successful designs. Methods Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion then compared with reduced lateral shoulder short stem, and short tapered-wedge designs in cyclic axial and torsional testing. Results Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as function of reduced stem length within the same component design. Conclusions Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.</description><subject>digital image correlation</subject><subject>Femur - physiology</subject><subject>Femur - surgery</subject><subject>Hip Prosthesis</subject><subject>Humans</subject><subject>micromotion</subject><subject>Orthopedics</subject><subject>primary stability</subject><subject>Prosthesis Design</subject><subject>short stem</subject><subject>Stress, Mechanical</subject><subject>THA</subject><issn>0883-5403</issn><issn>1532-8406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kV-L1DAUxYMo7rj6BXyQPvrSmj9N2oIIMrq6MCC4-hzS5GYns20yJunC-OlNndUHH4RAwsk5B-7vIvSS4IZgIt4cGhXzvqHl3eCuwYw9QhvCGa37FovHaIP7ntW8xewCPUvpgDEhnLdP0QXt-NC1jGzQ3XavotIZovupsgu-Cra6gjlENVXbMB-DB5-ra--yK8pNVqObXD5VypvyH7PTv-WonK_KUdVXMIsGUzSYqx3427yvPkByt_45emLVlODFw32Jvl99_Lb9XO--fLrevt_VuiUk10J31ghBe66EFUB6M4yDHUYzUAaD4Ra4toYbO1LVGmaIGQRYCkTzlkKn2SV6fe49xvBjgZTl7JKGaVIewpIk6cv0VAjcFys9W3UMKUWw8hjdrOJJEixXyPIgV8hyhSxxJwvkEnr10L-MM5i_kT9Ui-Ht2QBlynsHUSbtwBcqLoLO0gT3__53_8T15PwK-g5OkA5hib7wk0QmKrG8Wde8bpkIhlveYfYLN_WkRQ</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Small, Scott R., MS</creator><creator>Hensley, Sarah E., BS</creator><creator>Cook, Paige L., MEng</creator><creator>Stevens, Rebecca A., BS</creator><creator>Rogge, Renee D., PhD</creator><creator>Meding, John B</creator><creator>Berend, Michael E., MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170201</creationdate><title>Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design</title><author>Small, Scott R., MS ; Hensley, Sarah E., BS ; Cook, Paige L., MEng ; Stevens, Rebecca A., BS ; Rogge, Renee D., PhD ; Meding, John B ; Berend, Michael E., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>digital image correlation</topic><topic>Femur - physiology</topic><topic>Femur - surgery</topic><topic>Hip Prosthesis</topic><topic>Humans</topic><topic>micromotion</topic><topic>Orthopedics</topic><topic>primary stability</topic><topic>Prosthesis Design</topic><topic>short stem</topic><topic>Stress, Mechanical</topic><topic>THA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Small, Scott R., MS</creatorcontrib><creatorcontrib>Hensley, Sarah E., BS</creatorcontrib><creatorcontrib>Cook, Paige L., MEng</creatorcontrib><creatorcontrib>Stevens, Rebecca A., BS</creatorcontrib><creatorcontrib>Rogge, Renee D., PhD</creatorcontrib><creatorcontrib>Meding, John B</creatorcontrib><creatorcontrib>Berend, Michael E., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of arthroplasty</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Small, Scott R., MS</au><au>Hensley, Sarah E., BS</au><au>Cook, Paige L., MEng</au><au>Stevens, Rebecca A., BS</au><au>Rogge, Renee D., PhD</au><au>Meding, John B</au><au>Berend, Michael E., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design</atitle><jtitle>The Journal of arthroplasty</jtitle><addtitle>J Arthroplasty</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>32</volume><issue>2</issue><spage>601</spage><epage>609</epage><pages>601-609</pages><issn>0883-5403</issn><eissn>1532-8406</eissn><abstract>Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry, and (2) if short stemmed components exhibit primary stability on par with clinically successful designs. Methods Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion then compared with reduced lateral shoulder short stem, and short tapered-wedge designs in cyclic axial and torsional testing. Results Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as function of reduced stem length within the same component design. Conclusions Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27597431</pmid><doi>10.1016/j.arth.2016.07.033</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-5403
ispartof The Journal of arthroplasty, 2017-02, Vol.32 (2), p.601-609
issn 0883-5403
1532-8406
language eng
recordid cdi_proquest_miscellaneous_1859726608
source ScienceDirect Freedom Collection
subjects digital image correlation
Femur - physiology
Femur - surgery
Hip Prosthesis
Humans
micromotion
Orthopedics
primary stability
Prosthesis Design
short stem
Stress, Mechanical
THA
title Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Femoral%20Component%20Initial%20Stability%20and%20Cortical%20Strain%20in%20a%20Reduced%20Stem%20Length%20Design&rft.jtitle=The%20Journal%20of%20arthroplasty&rft.au=Small,%20Scott%20R.,%20MS&rft.date=2017-02-01&rft.volume=32&rft.issue=2&rft.spage=601&rft.epage=609&rft.pages=601-609&rft.issn=0883-5403&rft.eissn=1532-8406&rft_id=info:doi/10.1016/j.arth.2016.07.033&rft_dat=%3Cproquest_cross%3E1859726608%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859726608&rft_id=info:pmid/27597431&rfr_iscdi=true