Loading…
Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design
Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem...
Saved in:
Published in: | The Journal of arthroplasty 2017-02, Vol.32 (2), p.601-609 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3 |
container_end_page | 609 |
container_issue | 2 |
container_start_page | 601 |
container_title | The Journal of arthroplasty |
container_volume | 32 |
creator | Small, Scott R., MS Hensley, Sarah E., BS Cook, Paige L., MEng Stevens, Rebecca A., BS Rogge, Renee D., PhD Meding, John B Berend, Michael E., MD |
description | Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry, and (2) if short stemmed components exhibit primary stability on par with clinically successful designs. Methods Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion then compared with reduced lateral shoulder short stem, and short tapered-wedge designs in cyclic axial and torsional testing. Results Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as function of reduced stem length within the same component design. Conclusions Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability. |
doi_str_mv | 10.1016/j.arth.2016.07.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859726608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0883540316304570</els_id><sourcerecordid>1859726608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYMo7rj6BXyQPvrSmj9N2oIIMrq6MCC4-hzS5GYns20yJunC-OlNndUHH4RAwsk5B-7vIvSS4IZgIt4cGhXzvqHl3eCuwYw9QhvCGa37FovHaIP7ntW8xewCPUvpgDEhnLdP0QXt-NC1jGzQ3XavotIZovupsgu-Cra6gjlENVXbMB-DB5-ra--yK8pNVqObXD5VypvyH7PTv-WonK_KUdVXMIsGUzSYqx3427yvPkByt_45emLVlODFw32Jvl99_Lb9XO--fLrevt_VuiUk10J31ghBe66EFUB6M4yDHUYzUAaD4Ra4toYbO1LVGmaIGQRYCkTzlkKn2SV6fe49xvBjgZTl7JKGaVIewpIk6cv0VAjcFys9W3UMKUWw8hjdrOJJEixXyPIgV8hyhSxxJwvkEnr10L-MM5i_kT9Ui-Ht2QBlynsHUSbtwBcqLoLO0gT3__53_8T15PwK-g5OkA5hib7wk0QmKrG8Wde8bpkIhlveYfYLN_WkRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859726608</pqid></control><display><type>article</type><title>Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design</title><source>ScienceDirect Freedom Collection</source><creator>Small, Scott R., MS ; Hensley, Sarah E., BS ; Cook, Paige L., MEng ; Stevens, Rebecca A., BS ; Rogge, Renee D., PhD ; Meding, John B ; Berend, Michael E., MD</creator><creatorcontrib>Small, Scott R., MS ; Hensley, Sarah E., BS ; Cook, Paige L., MEng ; Stevens, Rebecca A., BS ; Rogge, Renee D., PhD ; Meding, John B ; Berend, Michael E., MD</creatorcontrib><description>Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry, and (2) if short stemmed components exhibit primary stability on par with clinically successful designs. Methods Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion then compared with reduced lateral shoulder short stem, and short tapered-wedge designs in cyclic axial and torsional testing. Results Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as function of reduced stem length within the same component design. Conclusions Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.</description><identifier>ISSN: 0883-5403</identifier><identifier>EISSN: 1532-8406</identifier><identifier>DOI: 10.1016/j.arth.2016.07.033</identifier><identifier>PMID: 27597431</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>digital image correlation ; Femur - physiology ; Femur - surgery ; Hip Prosthesis ; Humans ; micromotion ; Orthopedics ; primary stability ; Prosthesis Design ; short stem ; Stress, Mechanical ; THA</subject><ispartof>The Journal of arthroplasty, 2017-02, Vol.32 (2), p.601-609</ispartof><rights>Elsevier Inc.</rights><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3</citedby><cites>FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27597431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Small, Scott R., MS</creatorcontrib><creatorcontrib>Hensley, Sarah E., BS</creatorcontrib><creatorcontrib>Cook, Paige L., MEng</creatorcontrib><creatorcontrib>Stevens, Rebecca A., BS</creatorcontrib><creatorcontrib>Rogge, Renee D., PhD</creatorcontrib><creatorcontrib>Meding, John B</creatorcontrib><creatorcontrib>Berend, Michael E., MD</creatorcontrib><title>Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design</title><title>The Journal of arthroplasty</title><addtitle>J Arthroplasty</addtitle><description>Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry, and (2) if short stemmed components exhibit primary stability on par with clinically successful designs. Methods Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion then compared with reduced lateral shoulder short stem, and short tapered-wedge designs in cyclic axial and torsional testing. Results Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as function of reduced stem length within the same component design. Conclusions Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.</description><subject>digital image correlation</subject><subject>Femur - physiology</subject><subject>Femur - surgery</subject><subject>Hip Prosthesis</subject><subject>Humans</subject><subject>micromotion</subject><subject>Orthopedics</subject><subject>primary stability</subject><subject>Prosthesis Design</subject><subject>short stem</subject><subject>Stress, Mechanical</subject><subject>THA</subject><issn>0883-5403</issn><issn>1532-8406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kV-L1DAUxYMo7rj6BXyQPvrSmj9N2oIIMrq6MCC4-hzS5GYns20yJunC-OlNndUHH4RAwsk5B-7vIvSS4IZgIt4cGhXzvqHl3eCuwYw9QhvCGa37FovHaIP7ntW8xewCPUvpgDEhnLdP0QXt-NC1jGzQ3XavotIZovupsgu-Cra6gjlENVXbMB-DB5-ra--yK8pNVqObXD5VypvyH7PTv-WonK_KUdVXMIsGUzSYqx3427yvPkByt_45emLVlODFw32Jvl99_Lb9XO--fLrevt_VuiUk10J31ghBe66EFUB6M4yDHUYzUAaD4Ra4toYbO1LVGmaIGQRYCkTzlkKn2SV6fe49xvBjgZTl7JKGaVIewpIk6cv0VAjcFys9W3UMKUWw8hjdrOJJEixXyPIgV8hyhSxxJwvkEnr10L-MM5i_kT9Ui-Ht2QBlynsHUSbtwBcqLoLO0gT3__53_8T15PwK-g5OkA5hib7wk0QmKrG8Wde8bpkIhlveYfYLN_WkRQ</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Small, Scott R., MS</creator><creator>Hensley, Sarah E., BS</creator><creator>Cook, Paige L., MEng</creator><creator>Stevens, Rebecca A., BS</creator><creator>Rogge, Renee D., PhD</creator><creator>Meding, John B</creator><creator>Berend, Michael E., MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170201</creationdate><title>Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design</title><author>Small, Scott R., MS ; Hensley, Sarah E., BS ; Cook, Paige L., MEng ; Stevens, Rebecca A., BS ; Rogge, Renee D., PhD ; Meding, John B ; Berend, Michael E., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>digital image correlation</topic><topic>Femur - physiology</topic><topic>Femur - surgery</topic><topic>Hip Prosthesis</topic><topic>Humans</topic><topic>micromotion</topic><topic>Orthopedics</topic><topic>primary stability</topic><topic>Prosthesis Design</topic><topic>short stem</topic><topic>Stress, Mechanical</topic><topic>THA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Small, Scott R., MS</creatorcontrib><creatorcontrib>Hensley, Sarah E., BS</creatorcontrib><creatorcontrib>Cook, Paige L., MEng</creatorcontrib><creatorcontrib>Stevens, Rebecca A., BS</creatorcontrib><creatorcontrib>Rogge, Renee D., PhD</creatorcontrib><creatorcontrib>Meding, John B</creatorcontrib><creatorcontrib>Berend, Michael E., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of arthroplasty</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Small, Scott R., MS</au><au>Hensley, Sarah E., BS</au><au>Cook, Paige L., MEng</au><au>Stevens, Rebecca A., BS</au><au>Rogge, Renee D., PhD</au><au>Meding, John B</au><au>Berend, Michael E., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design</atitle><jtitle>The Journal of arthroplasty</jtitle><addtitle>J Arthroplasty</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>32</volume><issue>2</issue><spage>601</spage><epage>609</epage><pages>601-609</pages><issn>0883-5403</issn><eissn>1532-8406</eissn><abstract>Abstract Background Short stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry, and (2) if short stemmed components exhibit primary stability on par with clinically successful designs. Methods Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion then compared with reduced lateral shoulder short stem, and short tapered-wedge designs in cyclic axial and torsional testing. Results Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as function of reduced stem length within the same component design. Conclusions Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27597431</pmid><doi>10.1016/j.arth.2016.07.033</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-5403 |
ispartof | The Journal of arthroplasty, 2017-02, Vol.32 (2), p.601-609 |
issn | 0883-5403 1532-8406 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859726608 |
source | ScienceDirect Freedom Collection |
subjects | digital image correlation Femur - physiology Femur - surgery Hip Prosthesis Humans micromotion Orthopedics primary stability Prosthesis Design short stem Stress, Mechanical THA |
title | Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem Length Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Femoral%20Component%20Initial%20Stability%20and%20Cortical%20Strain%20in%20a%20Reduced%20Stem%20Length%20Design&rft.jtitle=The%20Journal%20of%20arthroplasty&rft.au=Small,%20Scott%20R.,%20MS&rft.date=2017-02-01&rft.volume=32&rft.issue=2&rft.spage=601&rft.epage=609&rft.pages=601-609&rft.issn=0883-5403&rft.eissn=1532-8406&rft_id=info:doi/10.1016/j.arth.2016.07.033&rft_dat=%3Cproquest_cross%3E1859726608%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-6c7fd66285a6f6e18d9b9f9bd923e9d5fe5cfd5dfb2a4d3d1d96ef2e1c542e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859726608&rft_id=info:pmid/27597431&rfr_iscdi=true |