Loading…
Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions
The current study investigates the hyperemic flow effects on heamodynamics parameters such as velocity, wall shear stress in 3D coronary artery models with and without stenosis. The hyperemic flow is used to evaluate the functional significance of stenosis in the current era. Patients CT scan data o...
Saved in:
Published in: | Computer methods in biomechanics and biomedical engineering 2017-03, Vol.20 (4), p.365-372 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-d9c69bf51c3c9bca58fc9865b3c5c89d1eddd86255299f790c20503e0246343e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-d9c69bf51c3c9bca58fc9865b3c5c89d1eddd86255299f790c20503e0246343e3 |
container_end_page | 372 |
container_issue | 4 |
container_start_page | 365 |
container_title | Computer methods in biomechanics and biomedical engineering |
container_volume | 20 |
creator | Kamangar, Sarfaraz Badruddin, Irfan Anjum Badarudin, A. Nik-Ghazali, N. Govindaraju, Kalimuthu Salman Ahmed, N. J. Yunus Khan, T. M. |
description | The current study investigates the hyperemic flow effects on heamodynamics parameters such as velocity, wall shear stress in 3D coronary artery models with and without stenosis. The hyperemic flow is used to evaluate the functional significance of stenosis in the current era. Patients CT scan data of having healthy and coronary artery disease was chosen for the reconstruction of 3D coronary artery models. The diseased 3D models of coronary artery shows a narrowing of >50% lumen area. Computational fluid dynamics was performed to simulate the hyperemic flow condition. The results showed that the recirculation zone was observed immediate to the stenosis and highest wall shear stress was observed across the stenosis. The decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding of hyperemic flow effect under both conditions. |
doi_str_mv | 10.1080/10255842.2016.1233402 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859735016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859735016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-d9c69bf51c3c9bca58fc9865b3c5c89d1eddd86255299f790c20503e0246343e3</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhgex2Fr9CUrATTdzm-9JdkqxWii40XXITU64KTPJmMwg8-_N5d66cKGrBPKcN5z36bp3BO8IVviWYCqE4nRHMZE7QhnjmL7orggfZK-o0C_bvTH9EbrsXtf6hDFWRPFX3SUdJKGS6KtufkhhXCE5QDmgukDKNVaUEzrAlP2W7BQdmm2xEyxQKooJLQdABewY69LeRggLcrnkZMuGbGnUhtbkoaDDNkOBY4DLyccl5lTfdBfBjhXens_r7sf95-93X_vHb18e7j499o7TYem9dlLvgyCOOb13VqjgtJJiz5xwSnsC3nslWwdU6zBo7CgWmAGmXDLOgF13N6fcueSfK9TFTLE6GEebIK_VEI3JwBkV5P-oEnpgovXc0A9_oU95Lakt0gIp05pjKRolTpQrudYCwcwlTq0eQ7A52jPP9szRnjnba3Pvz-nrfgL_Z-pZVwM-noCYQi6T_ZXL6M1itzGXUGxysRr27z9-A4gqqY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923994065</pqid></control><display><type>article</type><title>Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kamangar, Sarfaraz ; Badruddin, Irfan Anjum ; Badarudin, A. ; Nik-Ghazali, N. ; Govindaraju, Kalimuthu ; Salman Ahmed, N. J. ; Yunus Khan, T. M.</creator><creatorcontrib>Kamangar, Sarfaraz ; Badruddin, Irfan Anjum ; Badarudin, A. ; Nik-Ghazali, N. ; Govindaraju, Kalimuthu ; Salman Ahmed, N. J. ; Yunus Khan, T. M.</creatorcontrib><description>The current study investigates the hyperemic flow effects on heamodynamics parameters such as velocity, wall shear stress in 3D coronary artery models with and without stenosis. The hyperemic flow is used to evaluate the functional significance of stenosis in the current era. Patients CT scan data of having healthy and coronary artery disease was chosen for the reconstruction of 3D coronary artery models. The diseased 3D models of coronary artery shows a narrowing of >50% lumen area. Computational fluid dynamics was performed to simulate the hyperemic flow condition. The results showed that the recirculation zone was observed immediate to the stenosis and highest wall shear stress was observed across the stenosis. The decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding of hyperemic flow effect under both conditions.</description><identifier>ISSN: 1025-5842</identifier><identifier>EISSN: 1476-8259</identifier><identifier>DOI: 10.1080/10255842.2016.1233402</identifier><identifier>PMID: 27612619</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Blood Flow Velocity ; Cardiovascular disease ; CFD ; Computational fluid dynamics ; Computed tomography ; Computer applications ; Computer simulation ; Constriction, Pathologic - physiopathology ; Coronary artery ; Coronary artery disease ; Coronary Circulation ; Coronary Stenosis - diagnostic imaging ; Coronary Stenosis - physiopathology ; Coronary vessels ; Coronary Vessels - diagnostic imaging ; Coronary Vessels - physiopathology ; Downstream ; Fluid dynamics ; Heart diseases ; Hemodynamics ; Humans ; Hydrodynamics ; Hyperemia - diagnostic imaging ; Hyperemia - physiopathology ; Imaging, Three-Dimensional ; Mathematical models ; Mechanical stimuli ; Models, Cardiovascular ; non-Newtonian flow ; Patients ; Pressure ; Pressure drop ; Reconstruction ; Shear stress ; Stenosis ; Stress concentration ; Stress, Mechanical ; Three dimensional models ; Tomography, X-Ray Computed ; Velocity</subject><ispartof>Computer methods in biomechanics and biomedical engineering, 2017-03, Vol.20 (4), p.365-372</ispartof><rights>2016 Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-d9c69bf51c3c9bca58fc9865b3c5c89d1eddd86255299f790c20503e0246343e3</citedby><cites>FETCH-LOGICAL-c427t-d9c69bf51c3c9bca58fc9865b3c5c89d1eddd86255299f790c20503e0246343e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27612619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamangar, Sarfaraz</creatorcontrib><creatorcontrib>Badruddin, Irfan Anjum</creatorcontrib><creatorcontrib>Badarudin, A.</creatorcontrib><creatorcontrib>Nik-Ghazali, N.</creatorcontrib><creatorcontrib>Govindaraju, Kalimuthu</creatorcontrib><creatorcontrib>Salman Ahmed, N. J.</creatorcontrib><creatorcontrib>Yunus Khan, T. M.</creatorcontrib><title>Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions</title><title>Computer methods in biomechanics and biomedical engineering</title><addtitle>Comput Methods Biomech Biomed Engin</addtitle><description>The current study investigates the hyperemic flow effects on heamodynamics parameters such as velocity, wall shear stress in 3D coronary artery models with and without stenosis. The hyperemic flow is used to evaluate the functional significance of stenosis in the current era. Patients CT scan data of having healthy and coronary artery disease was chosen for the reconstruction of 3D coronary artery models. The diseased 3D models of coronary artery shows a narrowing of >50% lumen area. Computational fluid dynamics was performed to simulate the hyperemic flow condition. The results showed that the recirculation zone was observed immediate to the stenosis and highest wall shear stress was observed across the stenosis. The decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding of hyperemic flow effect under both conditions.</description><subject>Blood Flow Velocity</subject><subject>Cardiovascular disease</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Constriction, Pathologic - physiopathology</subject><subject>Coronary artery</subject><subject>Coronary artery disease</subject><subject>Coronary Circulation</subject><subject>Coronary Stenosis - diagnostic imaging</subject><subject>Coronary Stenosis - physiopathology</subject><subject>Coronary vessels</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>Coronary Vessels - physiopathology</subject><subject>Downstream</subject><subject>Fluid dynamics</subject><subject>Heart diseases</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Hyperemia - diagnostic imaging</subject><subject>Hyperemia - physiopathology</subject><subject>Imaging, Three-Dimensional</subject><subject>Mathematical models</subject><subject>Mechanical stimuli</subject><subject>Models, Cardiovascular</subject><subject>non-Newtonian flow</subject><subject>Patients</subject><subject>Pressure</subject><subject>Pressure drop</subject><subject>Reconstruction</subject><subject>Shear stress</subject><subject>Stenosis</subject><subject>Stress concentration</subject><subject>Stress, Mechanical</subject><subject>Three dimensional models</subject><subject>Tomography, X-Ray Computed</subject><subject>Velocity</subject><issn>1025-5842</issn><issn>1476-8259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEUhgex2Fr9CUrATTdzm-9JdkqxWii40XXITU64KTPJmMwg8-_N5d66cKGrBPKcN5z36bp3BO8IVviWYCqE4nRHMZE7QhnjmL7orggfZK-o0C_bvTH9EbrsXtf6hDFWRPFX3SUdJKGS6KtufkhhXCE5QDmgukDKNVaUEzrAlP2W7BQdmm2xEyxQKooJLQdABewY69LeRggLcrnkZMuGbGnUhtbkoaDDNkOBY4DLyccl5lTfdBfBjhXens_r7sf95-93X_vHb18e7j499o7TYem9dlLvgyCOOb13VqjgtJJiz5xwSnsC3nslWwdU6zBo7CgWmAGmXDLOgF13N6fcueSfK9TFTLE6GEebIK_VEI3JwBkV5P-oEnpgovXc0A9_oU95Lakt0gIp05pjKRolTpQrudYCwcwlTq0eQ7A52jPP9szRnjnba3Pvz-nrfgL_Z-pZVwM-noCYQi6T_ZXL6M1itzGXUGxysRr27z9-A4gqqY4</recordid><startdate>20170312</startdate><enddate>20170312</enddate><creator>Kamangar, Sarfaraz</creator><creator>Badruddin, Irfan Anjum</creator><creator>Badarudin, A.</creator><creator>Nik-Ghazali, N.</creator><creator>Govindaraju, Kalimuthu</creator><creator>Salman Ahmed, N. J.</creator><creator>Yunus Khan, T. M.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170312</creationdate><title>Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions</title><author>Kamangar, Sarfaraz ; Badruddin, Irfan Anjum ; Badarudin, A. ; Nik-Ghazali, N. ; Govindaraju, Kalimuthu ; Salman Ahmed, N. J. ; Yunus Khan, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-d9c69bf51c3c9bca58fc9865b3c5c89d1eddd86255299f790c20503e0246343e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Blood Flow Velocity</topic><topic>Cardiovascular disease</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Constriction, Pathologic - physiopathology</topic><topic>Coronary artery</topic><topic>Coronary artery disease</topic><topic>Coronary Circulation</topic><topic>Coronary Stenosis - diagnostic imaging</topic><topic>Coronary Stenosis - physiopathology</topic><topic>Coronary vessels</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>Coronary Vessels - physiopathology</topic><topic>Downstream</topic><topic>Fluid dynamics</topic><topic>Heart diseases</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Hyperemia - diagnostic imaging</topic><topic>Hyperemia - physiopathology</topic><topic>Imaging, Three-Dimensional</topic><topic>Mathematical models</topic><topic>Mechanical stimuli</topic><topic>Models, Cardiovascular</topic><topic>non-Newtonian flow</topic><topic>Patients</topic><topic>Pressure</topic><topic>Pressure drop</topic><topic>Reconstruction</topic><topic>Shear stress</topic><topic>Stenosis</topic><topic>Stress concentration</topic><topic>Stress, Mechanical</topic><topic>Three dimensional models</topic><topic>Tomography, X-Ray Computed</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamangar, Sarfaraz</creatorcontrib><creatorcontrib>Badruddin, Irfan Anjum</creatorcontrib><creatorcontrib>Badarudin, A.</creatorcontrib><creatorcontrib>Nik-Ghazali, N.</creatorcontrib><creatorcontrib>Govindaraju, Kalimuthu</creatorcontrib><creatorcontrib>Salman Ahmed, N. J.</creatorcontrib><creatorcontrib>Yunus Khan, T. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamangar, Sarfaraz</au><au>Badruddin, Irfan Anjum</au><au>Badarudin, A.</au><au>Nik-Ghazali, N.</au><au>Govindaraju, Kalimuthu</au><au>Salman Ahmed, N. J.</au><au>Yunus Khan, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions</atitle><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle><addtitle>Comput Methods Biomech Biomed Engin</addtitle><date>2017-03-12</date><risdate>2017</risdate><volume>20</volume><issue>4</issue><spage>365</spage><epage>372</epage><pages>365-372</pages><issn>1025-5842</issn><eissn>1476-8259</eissn><abstract>The current study investigates the hyperemic flow effects on heamodynamics parameters such as velocity, wall shear stress in 3D coronary artery models with and without stenosis. The hyperemic flow is used to evaluate the functional significance of stenosis in the current era. Patients CT scan data of having healthy and coronary artery disease was chosen for the reconstruction of 3D coronary artery models. The diseased 3D models of coronary artery shows a narrowing of >50% lumen area. Computational fluid dynamics was performed to simulate the hyperemic flow condition. The results showed that the recirculation zone was observed immediate to the stenosis and highest wall shear stress was observed across the stenosis. The decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding of hyperemic flow effect under both conditions.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>27612619</pmid><doi>10.1080/10255842.2016.1233402</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1025-5842 |
ispartof | Computer methods in biomechanics and biomedical engineering, 2017-03, Vol.20 (4), p.365-372 |
issn | 1025-5842 1476-8259 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859735016 |
source | Taylor and Francis Science and Technology Collection |
subjects | Blood Flow Velocity Cardiovascular disease CFD Computational fluid dynamics Computed tomography Computer applications Computer simulation Constriction, Pathologic - physiopathology Coronary artery Coronary artery disease Coronary Circulation Coronary Stenosis - diagnostic imaging Coronary Stenosis - physiopathology Coronary vessels Coronary Vessels - diagnostic imaging Coronary Vessels - physiopathology Downstream Fluid dynamics Heart diseases Hemodynamics Humans Hydrodynamics Hyperemia - diagnostic imaging Hyperemia - physiopathology Imaging, Three-Dimensional Mathematical models Mechanical stimuli Models, Cardiovascular non-Newtonian flow Patients Pressure Pressure drop Reconstruction Shear stress Stenosis Stress concentration Stress, Mechanical Three dimensional models Tomography, X-Ray Computed Velocity |
title | Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20stenosis%20on%20hemodynamic%20parameters%20in%20the%20realistic%20left%20coronary%20artery%20under%20hyperemic%20conditions&rft.jtitle=Computer%20methods%20in%20biomechanics%20and%20biomedical%20engineering&rft.au=Kamangar,%20Sarfaraz&rft.date=2017-03-12&rft.volume=20&rft.issue=4&rft.spage=365&rft.epage=372&rft.pages=365-372&rft.issn=1025-5842&rft.eissn=1476-8259&rft_id=info:doi/10.1080/10255842.2016.1233402&rft_dat=%3Cproquest_infor%3E1859735016%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-d9c69bf51c3c9bca58fc9865b3c5c89d1eddd86255299f790c20503e0246343e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923994065&rft_id=info:pmid/27612619&rfr_iscdi=true |