Loading…

Social Collaborative Filtering by Trust

Recommender systems are used to accurately and actively provide users with potentially interesting information or services. Collaborative filtering is a widely adopted approach to recommendation, but sparse data and cold-start users are often barriers to providing high quality recommendations. To ad...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2017-08, Vol.39 (8), p.1633-1647
Main Authors: Yang, Bo, Lei, Yu, Liu, Jiming, Li, Wenjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-727dbada8e2f0c8d86e942a00702fab2702acab277770133695ffb4d979bd38e3
cites cdi_FETCH-LOGICAL-c470t-727dbada8e2f0c8d86e942a00702fab2702acab277770133695ffb4d979bd38e3
container_end_page 1647
container_issue 8
container_start_page 1633
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 39
creator Yang, Bo
Lei, Yu
Liu, Jiming
Li, Wenjie
description Recommender systems are used to accurately and actively provide users with potentially interesting information or services. Collaborative filtering is a widely adopted approach to recommendation, but sparse data and cold-start users are often barriers to providing high quality recommendations. To address such issues, we propose a novel method that works to improve the performance of collaborative filtering recommendations by integrating sparse rating data given by users and sparse social trust network among these same users. This is a model-based method that adopts matrix factorization technique that maps users into low-dimensional latent feature spaces in terms of their trust relationship, and aims to more accurately reflect the users reciprocal influence on the formation of their own opinions and to learn better preferential patterns of users for high-quality recommendations. We use four large-scale datasets to show that the proposed method performs much better, especially for cold start users, than state-of-the-art recommendation algorithms for social collaborative filtering based on trust.
doi_str_mv 10.1109/TPAMI.2016.2605085
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859740669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7558226</ieee_id><sourcerecordid>2174397562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-727dbada8e2f0c8d86e942a00702fab2702acab277770133695ffb4d979bd38e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQUpeNBL6uxs9utYitVCRcF6XjbJRlLSRncTof_era09OJf3MM87DA8hlxRGlIK-X7yOn2cjBCpGKICD4kekTzXTCeNMH5N-3GCiFKoeOQthCUBTDuyU9FAKUCmnfXL71uSVrYeTpq5t1njbVt9uOK3q1vlq_THMNsOF70J7Tk5KWwd3sc8BeZ8-LCZPyfzlcTYZz5M8ldAmEmWR2cIqhyXkqlDC6RQtgAQsbYYxbL7NOEAZE5qXZZYWWuqsYMqxAbnb3f30zVfnQmtWVchdfG7tmi4YqriWKQihI3rzD102nV_H7wxSmTItucBI4Y7KfROCd6X59NXK-o2hYLYaza9Gs9Vo9hpj6Xp_ustWrjhU_rxF4GoHVM65w1pyrhAF-wEQA3RC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174397562</pqid></control><display><type>article</type><title>Social Collaborative Filtering by Trust</title><source>IEEE Xplore (Online service)</source><creator>Yang, Bo ; Lei, Yu ; Liu, Jiming ; Li, Wenjie</creator><creatorcontrib>Yang, Bo ; Lei, Yu ; Liu, Jiming ; Li, Wenjie</creatorcontrib><description>Recommender systems are used to accurately and actively provide users with potentially interesting information or services. Collaborative filtering is a widely adopted approach to recommendation, but sparse data and cold-start users are often barriers to providing high quality recommendations. To address such issues, we propose a novel method that works to improve the performance of collaborative filtering recommendations by integrating sparse rating data given by users and sparse social trust network among these same users. This is a model-based method that adopts matrix factorization technique that maps users into low-dimensional latent feature spaces in terms of their trust relationship, and aims to more accurately reflect the users reciprocal influence on the formation of their own opinions and to learn better preferential patterns of users for high-quality recommendations. We use four large-scale datasets to show that the proposed method performs much better, especially for cold start users, than state-of-the-art recommendation algorithms for social collaborative filtering based on trust.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2605085</identifier><identifier>PMID: 27608451</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acquisitions &amp; mergers ; Cold starts ; Collaboration ; collaborative filtering ; Computer science ; Data models ; Electronic mail ; Filtration ; matrix factorization ; Performance enhancement ; Predictive models ; Recommender system ; Recommender systems ; Social network services ; State of the art ; trust network ; Writing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2017-08, Vol.39 (8), p.1633-1647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-727dbada8e2f0c8d86e942a00702fab2702acab277770133695ffb4d979bd38e3</citedby><cites>FETCH-LOGICAL-c470t-727dbada8e2f0c8d86e942a00702fab2702acab277770133695ffb4d979bd38e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7558226$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27608451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Liu, Jiming</creatorcontrib><creatorcontrib>Li, Wenjie</creatorcontrib><title>Social Collaborative Filtering by Trust</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Recommender systems are used to accurately and actively provide users with potentially interesting information or services. Collaborative filtering is a widely adopted approach to recommendation, but sparse data and cold-start users are often barriers to providing high quality recommendations. To address such issues, we propose a novel method that works to improve the performance of collaborative filtering recommendations by integrating sparse rating data given by users and sparse social trust network among these same users. This is a model-based method that adopts matrix factorization technique that maps users into low-dimensional latent feature spaces in terms of their trust relationship, and aims to more accurately reflect the users reciprocal influence on the formation of their own opinions and to learn better preferential patterns of users for high-quality recommendations. We use four large-scale datasets to show that the proposed method performs much better, especially for cold start users, than state-of-the-art recommendation algorithms for social collaborative filtering based on trust.</description><subject>Acquisitions &amp; mergers</subject><subject>Cold starts</subject><subject>Collaboration</subject><subject>collaborative filtering</subject><subject>Computer science</subject><subject>Data models</subject><subject>Electronic mail</subject><subject>Filtration</subject><subject>matrix factorization</subject><subject>Performance enhancement</subject><subject>Predictive models</subject><subject>Recommender system</subject><subject>Recommender systems</subject><subject>Social network services</subject><subject>State of the art</subject><subject>trust network</subject><subject>Writing</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-AQUpeNBL6uxs9utYitVCRcF6XjbJRlLSRncTof_era09OJf3MM87DA8hlxRGlIK-X7yOn2cjBCpGKICD4kekTzXTCeNMH5N-3GCiFKoeOQthCUBTDuyU9FAKUCmnfXL71uSVrYeTpq5t1njbVt9uOK3q1vlq_THMNsOF70J7Tk5KWwd3sc8BeZ8-LCZPyfzlcTYZz5M8ldAmEmWR2cIqhyXkqlDC6RQtgAQsbYYxbL7NOEAZE5qXZZYWWuqsYMqxAbnb3f30zVfnQmtWVchdfG7tmi4YqriWKQihI3rzD102nV_H7wxSmTItucBI4Y7KfROCd6X59NXK-o2hYLYaza9Gs9Vo9hpj6Xp_ustWrjhU_rxF4GoHVM65w1pyrhAF-wEQA3RC</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Yang, Bo</creator><creator>Lei, Yu</creator><creator>Liu, Jiming</creator><creator>Li, Wenjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20170801</creationdate><title>Social Collaborative Filtering by Trust</title><author>Yang, Bo ; Lei, Yu ; Liu, Jiming ; Li, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-727dbada8e2f0c8d86e942a00702fab2702acab277770133695ffb4d979bd38e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acquisitions &amp; mergers</topic><topic>Cold starts</topic><topic>Collaboration</topic><topic>collaborative filtering</topic><topic>Computer science</topic><topic>Data models</topic><topic>Electronic mail</topic><topic>Filtration</topic><topic>matrix factorization</topic><topic>Performance enhancement</topic><topic>Predictive models</topic><topic>Recommender system</topic><topic>Recommender systems</topic><topic>Social network services</topic><topic>State of the art</topic><topic>trust network</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Liu, Jiming</creatorcontrib><creatorcontrib>Li, Wenjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Bo</au><au>Lei, Yu</au><au>Liu, Jiming</au><au>Li, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social Collaborative Filtering by Trust</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>39</volume><issue>8</issue><spage>1633</spage><epage>1647</epage><pages>1633-1647</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Recommender systems are used to accurately and actively provide users with potentially interesting information or services. Collaborative filtering is a widely adopted approach to recommendation, but sparse data and cold-start users are often barriers to providing high quality recommendations. To address such issues, we propose a novel method that works to improve the performance of collaborative filtering recommendations by integrating sparse rating data given by users and sparse social trust network among these same users. This is a model-based method that adopts matrix factorization technique that maps users into low-dimensional latent feature spaces in terms of their trust relationship, and aims to more accurately reflect the users reciprocal influence on the formation of their own opinions and to learn better preferential patterns of users for high-quality recommendations. We use four large-scale datasets to show that the proposed method performs much better, especially for cold start users, than state-of-the-art recommendation algorithms for social collaborative filtering based on trust.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27608451</pmid><doi>10.1109/TPAMI.2016.2605085</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2017-08, Vol.39 (8), p.1633-1647
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_1859740669
source IEEE Xplore (Online service)
subjects Acquisitions & mergers
Cold starts
Collaboration
collaborative filtering
Computer science
Data models
Electronic mail
Filtration
matrix factorization
Performance enhancement
Predictive models
Recommender system
Recommender systems
Social network services
State of the art
trust network
Writing
title Social Collaborative Filtering by Trust
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20Collaborative%20Filtering%20by%20Trust&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Yang,%20Bo&rft.date=2017-08-01&rft.volume=39&rft.issue=8&rft.spage=1633&rft.epage=1647&rft.pages=1633-1647&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2605085&rft_dat=%3Cproquest_pubme%3E2174397562%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-727dbada8e2f0c8d86e942a00702fab2702acab277770133695ffb4d979bd38e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174397562&rft_id=info:pmid/27608451&rft_ieee_id=7558226&rfr_iscdi=true