Loading…

Biomechanical and endplate effects on nutrient transport in the intervertebral disc

Abstract Background Physical data are lacking on nutrient transport in human intervertebral discs (IVDs), which supports regeneration. Our objective was to study nutrient transport in porcine IVDs to determine the effects of biomechanical and physiological factors. Methods In vitro testing of whole...

Full description

Saved in:
Bibliographic Details
Published in:World neurosurgery 2017-03, Vol.99, p.395-402
Main Authors: Giers, Morgan B., PhD, Munter, Bryce T., MS, Eyster, Kyle J., MS, Ide, George D., MD, Newcomb, Anna G.U.S., MS, Lehrman, Jennifer N., MS, Belykh, Evgenii, MD, Byvaltsev, Vadim A., MD PhD, Kelly, Brian P., PhD, Preul, Mark C., MD, Theodore, Nicholas, MD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Physical data are lacking on nutrient transport in human intervertebral discs (IVDs), which supports regeneration. Our objective was to study nutrient transport in porcine IVDs to determine the effects of biomechanical and physiological factors. Methods In vitro testing of whole porcine IVDs was performed under different loading conditions. Fifty cervical, thoracic, and lumbar discs with attached end plates were removed from 4 Yorkshire pigs (90-150 pounds). Discs were placed in Safranin O or Fast Green FCF histological stains in diffusion or diurnal compression-tested groups. The end plate was studied by using polyurethane to block it. Traction was studied with a mechanical testing frame. Discs were cut transversely and photographed. Images were analyzed for depth of annulus fibrosus (AF) stained. The nucleus pulposus (NP) was assigned a staining score. Results Results showed no difference in AF staining between the two stains (P=0.60). The depth of AF staining did not increase (P=0.60) due to convection or disc height change via diurnal loading. The NP in all open end plate samples was completely stained by day 3. NP staining was decreased in blocked end plate samples (P=0.07) and AF staining was significantly less in traction samples than in diffusion-only samples (P=0.04). Conclusions This method showed that most small molecule nutrient transport occurs via the end plate. Compressive load was a negligible benefit or hindrance to transport. Traction hindered transport in the short term. This method can be used to study strategies for increasing nutrient transport in IVDs.
ISSN:1878-8750
1878-8769
DOI:10.1016/j.wneu.2016.12.041