Loading…

Prevention of Nitric Oxide-Mediated 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinson’s Disease in Mice by Tea Phenolic Epigallocatechin 3-Gallate

In animal models of Parkinson’s disease (PD), the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is mediated by oxidative stress, especially by nitric oxide (NO). Inhibition of NO synthase (NOS) activity in the brain produces a neuroprotective effect against PD induced by MPTP. Gree...

Full description

Saved in:
Bibliographic Details
Published in:Neurotoxicology (Park Forest South) 2002-09, Vol.23 (3), p.367-374
Main Authors: Choi, Ji-Young, Park, Chang-Shin, Kim, Dae-Joong, Cho, Myung-Haeng, Jin, Byung-Kwan, Pie, Jae-Eun, Chung, Woon-Gye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In animal models of Parkinson’s disease (PD), the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is mediated by oxidative stress, especially by nitric oxide (NO). Inhibition of NO synthase (NOS) activity in the brain produces a neuroprotective effect against PD induced by MPTP. Green tea containing high levels of (−)-epigallocatechin 3-gallate (EGCG) was administered to test whether EGCG attenuates MPTP-induced PD in mice through the inhibition of NOS expression. Both tea and the oral administration of EGCG prevented the loss of tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and of TH activity in the striatum. These treatments also preserved striatal levels of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid (HVA). Both tea and EGCG decreased expressions of nNOS in the substantia nigra. Also tea plus MPTP and EGCG plus MPTP treatments decreased expressions of neuronal NO synthase (nNOS) at the similar levels of EGCG treatment group. Therefore, the preventive effects of tea and EGCG may be explained by the inhibition of nNOS in the substantia nigra.
ISSN:0161-813X
1872-9711
DOI:10.1016/S0161-813X(02)00079-7