Loading…

Gaseous microflow modeling using the Fokker-Planck equation

We present a comparative study of gaseous microflow systems using the recently introduced Fokker-Planck approach and other methods such as: direct simulation Monte Carlo, lattice Boltzmann, and variational solution of Boltzmann-BGK. We show that this Fokker-Plank approach performs efficiently at int...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2016-12, Vol.94 (6-1), p.063307-063307, Article 063307
Main Authors: Singh, S K, Thantanapally, Chakradhar, Ansumali, Santosh
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a comparative study of gaseous microflow systems using the recently introduced Fokker-Planck approach and other methods such as: direct simulation Monte Carlo, lattice Boltzmann, and variational solution of Boltzmann-BGK. We show that this Fokker-Plank approach performs efficiently at intermediate values of Knudsen number, a region where direct simulation Monte Carlo becomes expensive and lattice Boltzmann becomes inaccurate. We also investigate the effectiveness of a recently proposed Fokker-Planck model in simulations of heat transfer, as a function of relevant parameters such as the Prandtl, Knudsen numbers. Furthermore, we present simulation of shock wave as a function of Mach number in transonic regime. Our results suggest that the performance of the Fokker-Planck approach is superior to that of the other methods in transition regime for rarefied gas flow and transonic regime for shock wave.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.94.063307