Loading…
The goal of locomotion: Separating the fundamental task from the mechanisms that accomplish it
Human locomotion has been well described but is still not well understood. This is largely true because the observable aspects of locomotion—neuromuscular activity that generates forces and motions—relate to both the task solution and the problem being solved. Identifying the fundamental task achiev...
Saved in:
Published in: | Psychonomic bulletin & review 2017-12, Vol.24 (6), p.1675-1685 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human locomotion has been well described but is still not well understood. This is largely true because the observable aspects of locomotion—neuromuscular activity that generates forces and motions—relate to both the task solution and the problem being solved. Identifying the fundamental task achieved in locomotion makes it possible to critically evaluate the motor control strategy used to accomplish the task goal. We contend that the readily observed movements and activities of locomotion should be considered mechanism(s). Our proposal is that the fundamental task of walking and running is analogous to flight, and should be defined in terms of the interaction of the individual’s mass with the medium in which it moves: a low-density fluid for flight, or the supporting substrate for legged locomotion. A rigorous definition of the fundamental task can help identify the constraints and opportunities that influence its solution and guide the selection of appropriate mechanisms to accomplish the task effectively. The results from robotics-based modeling studies have demonstrated how the interaction of the mass and substrate can be optimized, making the goal of movement a defined trajectory of the individual’s mass. We assessed these concepts by evaluating the ground reaction forces generated by an optimization model that satisfies the task but uses none of the mechanisms that are available to the human leg. Then we compared this model to normal human walking. Although it is obvious that the specific task of locomotion changes with a variety of movement challenges, clearly identifying the fundamental task of locomotion puts all other features in an interpretable context. |
---|---|
ISSN: | 1069-9384 1531-5320 |
DOI: | 10.3758/s13423-016-1222-3 |