Loading…
Cytochrome P450 reaction phenotyping and inhibition and induction studies of pinostrobin in human liver microsomes and hepatocytes
Pinostrobin (PI, 5‐hydroxy‐7‐methoxyflavanone) is a natural flavonoid known for its rich pharmacological activities. The objective of this study was to identify the human liver cytochrome P450 (CYP450) isoenzymes involved in the metabolism of PI. A single hydoxylated metabolite was obtained from PI...
Saved in:
Published in: | Biomedical chromatography 2017-06, Vol.31 (6), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pinostrobin (PI, 5‐hydroxy‐7‐methoxyflavanone) is a natural flavonoid known for its rich pharmacological activities. The objective of this study was to identify the human liver cytochrome P450 (CYP450) isoenzymes involved in the metabolism of PI. A single hydoxylated metabolite was obtained from PI after an incubation with pooled human liver microsomes (HLMs). The relative contributions of different CYP450s were evaluated using CYP450‐selective inhibitors in HLMs and recombinant human CYP450 enzymes, and the results revealed the major involvement of CYP1A2, CYP2C9 and CYP2E1 in PI metabolism. We also evaluated the ability of PI to inhibit and induce human cytochrome P450 enzymes in vitro. High‐performance liquid chromatography and liquid chromatography–tandem mass spectrometry analytical techniques were used to estimate the enzymatic activities of seven drug‐metabolizing CYP450 isozymes in vitro. In HLMs, PI did not inhibit CYP 1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 or CYP3A4 (IC50 > 100 μm). In the induction studies, PI had minimal effects on CYP1A2, CYP2B6and CYP3A4 activity. Based on these results, PI would not be expected to cause clinically significant CYP450 inhibition or induction. |
---|---|
ISSN: | 0269-3879 1099-0801 |
DOI: | 10.1002/bmc.3888 |