Loading…

Identification of unique or elevated levels of kernel proteins in aflatoxin-resistant maize genotypes through proteome analysis

ABSTRACT Aflatoxins are carcinogens produced by Aspergillus flavus and A. parasiticus during infection of susceptible crops such as maize (Zea mays L.). Resistant maize genotypes have been identified, but the incorporation of resistance into commercial lines has been slow due to the lack of selectab...

Full description

Saved in:
Bibliographic Details
Published in:Phytopathology 2002-10, Vol.92 (10), p.1084-1094
Main Authors: CHEN, Z.-Y, BROWN, R. L, DAMANN, K. E, CLEVELAND, T. E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Aflatoxins are carcinogens produced by Aspergillus flavus and A. parasiticus during infection of susceptible crops such as maize (Zea mays L.). Resistant maize genotypes have been identified, but the incorporation of resistance into commercial lines has been slow due to the lack of selectable markers. Here we report the identification of potential markers in resistant maize lines using a proteomics approach. Kernel embryo proteins from each of two resistant genotypes have been compared with those from a composite of five susceptible genotypes using large format two-dimensional gel electrophoresis. Through these comparisons, both quantitative and qualitative differences have been identified. Protein spots have been sequenced, and based on peptide sequence homology analysis, are categorized as follows: storage proteins (globulin 1 and globulin 2), late embryogenesis abundant (LEA) proteins related to drought or desiccation (LEA3 and LEA14), water- or osmo-stress related proteins (WSI18 and aldose reductase), and heat-stress related proteins (HSP16.9). Aldose reductase activity measured in resistant and susceptible genotypes before and after infection suggests the importance of constitutive levels of this enzyme to resistance. Results of this study point to a correlation between host resistance and stress tolerance. The putative function of each identified protein is discussed.
ISSN:0031-949X
1943-7684
DOI:10.1094/PHYTO.2002.92.10.1084