Loading…
Modeling the growth of Listeria monocytogenes in cured ready-to-eat processed meat products by manipulation of sodium chloride, sodium diacetate, potassium lactate, and product moisture content
A central composite second-order response surface design was employed to determine the influences of added sodium chloride (0.8 to 3.6%), sodium diacetate (0 to 0.2%), potassium lactate syrup (0.25 to 9.25%), and finished-product moisture (45.5 to 83.5%) on the predicted growth rate of Listeria mono...
Saved in:
Published in: | Journal of food protection 2002-04, Vol.65 (4), p.651-658 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A central composite second-order response surface design was employed to determine the influences of added sodium chloride (0.8 to 3.6%), sodium diacetate (0 to 0.2%), potassium lactate syrup (0.25 to 9.25%), and finished-product moisture (45.5 to 83.5%) on the predicted growth rate of Listeria monocytogenes in cured ready-to-eat (RTE) meat products. Increased amounts of both sodium diacetate (P < 0.11) and potassium lactate (P < 0.001) resulted in significant reductions in the growth rate constants of L monocytogenes. Increased finished-product moisture (P < 0.11) significantly increased growth rate constants. The nfluence of sodium chloride was not statistically significant. The second-order statistical factor for lactate was significant (P < 0.01), but all two-way interactions were not. In general, predicted growth rates exceeded actual growth rates obtained from inoculation studies of four cured RTE meat products (wieners, smoked-cooked ham, light bologna, and cotto salami). The final model will be useful to food technologists in determining formulations that will result in finished cured RTE meat products in which L. monocytogenes is not likely to grow. |
---|---|
ISSN: | 0362-028X 1944-9097 |
DOI: | 10.4315/0362-028X-65.4.651 |