Loading…

Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin

We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the ai...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2017-03, Vol.28 (11), p.115501-115501
Main Authors: Yang, Jun, Ran, Qincui, Wei, Dapeng, Sun, Tai, Yu, Leyong, Song, Xuefen, Pu, Lichun, Shi, Haofei, Du, Chunlei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the aid of nanofabrication technology. Then a stamping transfer method was used to replicate the micropattern of the unpolished silicon wafer. Due to the large contact interface between the 3D graphene network and the PDMS, this type of E-skin worked under a stretching ratio of nearly 100%, and showed excellent mechanical strength and high sensitivity, with a change in relative resistance of up to 6500% and a gauge factor of 65.9 at 99.64% strain. Furthermore, the E-skin exhibited an obvious highly sensitive response to joint movement, eye movement and sound vibration, demonstrating broad potential applications in healthcare, body monitoring and wearable devices.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/aa5b56