Loading…

Characterization of Linear Viscoelastic Behavior of Asphalt Concrete Using Complex Modulus Model

AbstractA new approach for the characterization of linear viscoelastic (LVE) behavior of asphalt concrete is presented in this study. The proposed approach uses the associated function of the original Havriliak-Negami (HN) formulation to model the complex modulus of the material. The model coefficie...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials in civil engineering 2013-10, Vol.25 (10), p.1543-1548
Main Authors: Zhao, Yanqing, Liu, Hui, Bai, Long, Tan, Yiqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a372t-9fdd058922c8cd265c7a544e5289a1445d6d4c2e1809bebb54c725139aff27543
cites cdi_FETCH-LOGICAL-a372t-9fdd058922c8cd265c7a544e5289a1445d6d4c2e1809bebb54c725139aff27543
container_end_page 1548
container_issue 10
container_start_page 1543
container_title Journal of materials in civil engineering
container_volume 25
creator Zhao, Yanqing
Liu, Hui
Bai, Long
Tan, Yiqiu
description AbstractA new approach for the characterization of linear viscoelastic (LVE) behavior of asphalt concrete is presented in this study. The proposed approach uses the associated function of the original Havriliak-Negami (HN) formulation to model the complex modulus of the material. The model coefficients are determined in two steps. First, the coefficients associated with the complex plane representation of complex modulus are solved in the Cole-Cole domain. Second, the coefficients related to the time-temperature shifting are determined. The results show that the approach can accurately characterize the LVE properties of asphalt concrete contained in the entire data set for the complex modulus. The approach overcomes several shortcomings in the conventional method of constructing a viscoelastic function master curve by fitting a sigmoidal function to test results. Each model coefficient in the proposed approach has a clear physical meaning in interpreting the LVE behavior of asphalt concrete; the same values of model coefficients can be used to construct the master curves of storage modulus, loss modulus, dynamic modulus, and phase angle. Also, the Kronig-Kramers relations are automatically satisfied because the mathematical forms of various viscoelastic functions are theoretically derived from the same complex modulus model, and thus, the results are in compliance with LVE theory. The proposed approach provides a unified and consistent way to characterize the LVE properties of asphalt concrete.
doi_str_mv 10.1061/(ASCE)MT.1943-5533.0000688
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864532575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864532575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-9fdd058922c8cd265c7a544e5289a1445d6d4c2e1809bebb54c725139aff27543</originalsourceid><addsrcrecordid>eNp1kEFv2yAUx9G0Ss3afgdr0qTu4Aww2Hi3zOrWSol6aNorfcHPCxUxGdhVu08_rES5jcsTjx_vDz9CPjM6Z7Rk364XD83N19V6zmpR5FIWxZymVSr1gcxOvY9kRlVd50yW7Jx8ivElMQUVdEaemy0EMAMG-xcG6_vMd9nS9gghe7LReHQQB2uyH7iFV-vDdL6I-y24IWt8bwIOmD1G2_9O293e4Vu28u3oxjhVdJfkrAMX8epYL8jjz5t1c5sv73_dNYtlDkXFh7zu2pZKVXNulGl5KU0FUgiUXNXAhJBt2QrDkSlab3CzkcJUXLKihq7jlRTFBbk-zN0H_2fEOOhdej46Bz36MWqmSiELLiuZ0O8H1AQfY8BO74PdQXjXjOpJq9aTVr1a60mhnhTqo9Z0-csxB6IB1wXojY2nCbyqZKUUS1x54BKG-sWPoU_fPyX8P-AfMiKJew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864532575</pqid></control><display><type>article</type><title>Characterization of Linear Viscoelastic Behavior of Asphalt Concrete Using Complex Modulus Model</title><source>ASCE Journals</source><creator>Zhao, Yanqing ; Liu, Hui ; Bai, Long ; Tan, Yiqiu</creator><creatorcontrib>Zhao, Yanqing ; Liu, Hui ; Bai, Long ; Tan, Yiqiu</creatorcontrib><description>AbstractA new approach for the characterization of linear viscoelastic (LVE) behavior of asphalt concrete is presented in this study. The proposed approach uses the associated function of the original Havriliak-Negami (HN) formulation to model the complex modulus of the material. The model coefficients are determined in two steps. First, the coefficients associated with the complex plane representation of complex modulus are solved in the Cole-Cole domain. Second, the coefficients related to the time-temperature shifting are determined. The results show that the approach can accurately characterize the LVE properties of asphalt concrete contained in the entire data set for the complex modulus. The approach overcomes several shortcomings in the conventional method of constructing a viscoelastic function master curve by fitting a sigmoidal function to test results. Each model coefficient in the proposed approach has a clear physical meaning in interpreting the LVE behavior of asphalt concrete; the same values of model coefficients can be used to construct the master curves of storage modulus, loss modulus, dynamic modulus, and phase angle. Also, the Kronig-Kramers relations are automatically satisfied because the mathematical forms of various viscoelastic functions are theoretically derived from the same complex modulus model, and thus, the results are in compliance with LVE theory. The proposed approach provides a unified and consistent way to characterize the LVE properties of asphalt concrete.</description><identifier>ISSN: 0899-1561</identifier><identifier>EISSN: 1943-5533</identifier><identifier>DOI: 10.1061/(ASCE)MT.1943-5533.0000688</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Asphalt ; Buildings. Public works ; Concrete construction ; Concretes ; Concretes. Mortars. Grouts ; Curve fitting ; Exact sciences and technology ; General (composition, classification, performance, standards, patents, etc.) ; Loss modulus ; Materials ; Mathematical analysis ; Mathematical models ; Strength of materials (elasticity, plasticity, buckling, etc.) ; Structural analysis. Stresses ; Technical Papers ; Viscoelasticity</subject><ispartof>Journal of materials in civil engineering, 2013-10, Vol.25 (10), p.1543-1548</ispartof><rights>2013 American Society of Civil Engineers</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-9fdd058922c8cd265c7a544e5289a1445d6d4c2e1809bebb54c725139aff27543</citedby><cites>FETCH-LOGICAL-a372t-9fdd058922c8cd265c7a544e5289a1445d6d4c2e1809bebb54c725139aff27543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)MT.1943-5533.0000688$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0000688$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,3239,10049,27901,27902,75934,75942</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27757881$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yanqing</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Bai, Long</creatorcontrib><creatorcontrib>Tan, Yiqiu</creatorcontrib><title>Characterization of Linear Viscoelastic Behavior of Asphalt Concrete Using Complex Modulus Model</title><title>Journal of materials in civil engineering</title><description>AbstractA new approach for the characterization of linear viscoelastic (LVE) behavior of asphalt concrete is presented in this study. The proposed approach uses the associated function of the original Havriliak-Negami (HN) formulation to model the complex modulus of the material. The model coefficients are determined in two steps. First, the coefficients associated with the complex plane representation of complex modulus are solved in the Cole-Cole domain. Second, the coefficients related to the time-temperature shifting are determined. The results show that the approach can accurately characterize the LVE properties of asphalt concrete contained in the entire data set for the complex modulus. The approach overcomes several shortcomings in the conventional method of constructing a viscoelastic function master curve by fitting a sigmoidal function to test results. Each model coefficient in the proposed approach has a clear physical meaning in interpreting the LVE behavior of asphalt concrete; the same values of model coefficients can be used to construct the master curves of storage modulus, loss modulus, dynamic modulus, and phase angle. Also, the Kronig-Kramers relations are automatically satisfied because the mathematical forms of various viscoelastic functions are theoretically derived from the same complex modulus model, and thus, the results are in compliance with LVE theory. The proposed approach provides a unified and consistent way to characterize the LVE properties of asphalt concrete.</description><subject>Applied sciences</subject><subject>Asphalt</subject><subject>Buildings. Public works</subject><subject>Concrete construction</subject><subject>Concretes</subject><subject>Concretes. Mortars. Grouts</subject><subject>Curve fitting</subject><subject>Exact sciences and technology</subject><subject>General (composition, classification, performance, standards, patents, etc.)</subject><subject>Loss modulus</subject><subject>Materials</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Strength of materials (elasticity, plasticity, buckling, etc.)</subject><subject>Structural analysis. Stresses</subject><subject>Technical Papers</subject><subject>Viscoelasticity</subject><issn>0899-1561</issn><issn>1943-5533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEFv2yAUx9G0Ss3afgdr0qTu4Aww2Hi3zOrWSol6aNorfcHPCxUxGdhVu08_rES5jcsTjx_vDz9CPjM6Z7Rk364XD83N19V6zmpR5FIWxZymVSr1gcxOvY9kRlVd50yW7Jx8ivElMQUVdEaemy0EMAMG-xcG6_vMd9nS9gghe7LReHQQB2uyH7iFV-vDdL6I-y24IWt8bwIOmD1G2_9O293e4Vu28u3oxjhVdJfkrAMX8epYL8jjz5t1c5sv73_dNYtlDkXFh7zu2pZKVXNulGl5KU0FUgiUXNXAhJBt2QrDkSlab3CzkcJUXLKihq7jlRTFBbk-zN0H_2fEOOhdej46Bz36MWqmSiELLiuZ0O8H1AQfY8BO74PdQXjXjOpJq9aTVr1a60mhnhTqo9Z0-csxB6IB1wXojY2nCbyqZKUUS1x54BKG-sWPoU_fPyX8P-AfMiKJew</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Zhao, Yanqing</creator><creator>Liu, Hui</creator><creator>Bai, Long</creator><creator>Tan, Yiqiu</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20131001</creationdate><title>Characterization of Linear Viscoelastic Behavior of Asphalt Concrete Using Complex Modulus Model</title><author>Zhao, Yanqing ; Liu, Hui ; Bai, Long ; Tan, Yiqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-9fdd058922c8cd265c7a544e5289a1445d6d4c2e1809bebb54c725139aff27543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Asphalt</topic><topic>Buildings. Public works</topic><topic>Concrete construction</topic><topic>Concretes</topic><topic>Concretes. Mortars. Grouts</topic><topic>Curve fitting</topic><topic>Exact sciences and technology</topic><topic>General (composition, classification, performance, standards, patents, etc.)</topic><topic>Loss modulus</topic><topic>Materials</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Strength of materials (elasticity, plasticity, buckling, etc.)</topic><topic>Structural analysis. Stresses</topic><topic>Technical Papers</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yanqing</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Bai, Long</creatorcontrib><creatorcontrib>Tan, Yiqiu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of materials in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yanqing</au><au>Liu, Hui</au><au>Bai, Long</au><au>Tan, Yiqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Linear Viscoelastic Behavior of Asphalt Concrete Using Complex Modulus Model</atitle><jtitle>Journal of materials in civil engineering</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>25</volume><issue>10</issue><spage>1543</spage><epage>1548</epage><pages>1543-1548</pages><issn>0899-1561</issn><eissn>1943-5533</eissn><abstract>AbstractA new approach for the characterization of linear viscoelastic (LVE) behavior of asphalt concrete is presented in this study. The proposed approach uses the associated function of the original Havriliak-Negami (HN) formulation to model the complex modulus of the material. The model coefficients are determined in two steps. First, the coefficients associated with the complex plane representation of complex modulus are solved in the Cole-Cole domain. Second, the coefficients related to the time-temperature shifting are determined. The results show that the approach can accurately characterize the LVE properties of asphalt concrete contained in the entire data set for the complex modulus. The approach overcomes several shortcomings in the conventional method of constructing a viscoelastic function master curve by fitting a sigmoidal function to test results. Each model coefficient in the proposed approach has a clear physical meaning in interpreting the LVE behavior of asphalt concrete; the same values of model coefficients can be used to construct the master curves of storage modulus, loss modulus, dynamic modulus, and phase angle. Also, the Kronig-Kramers relations are automatically satisfied because the mathematical forms of various viscoelastic functions are theoretically derived from the same complex modulus model, and thus, the results are in compliance with LVE theory. The proposed approach provides a unified and consistent way to characterize the LVE properties of asphalt concrete.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)MT.1943-5533.0000688</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-1561
ispartof Journal of materials in civil engineering, 2013-10, Vol.25 (10), p.1543-1548
issn 0899-1561
1943-5533
language eng
recordid cdi_proquest_miscellaneous_1864532575
source ASCE Journals
subjects Applied sciences
Asphalt
Buildings. Public works
Concrete construction
Concretes
Concretes. Mortars. Grouts
Curve fitting
Exact sciences and technology
General (composition, classification, performance, standards, patents, etc.)
Loss modulus
Materials
Mathematical analysis
Mathematical models
Strength of materials (elasticity, plasticity, buckling, etc.)
Structural analysis. Stresses
Technical Papers
Viscoelasticity
title Characterization of Linear Viscoelastic Behavior of Asphalt Concrete Using Complex Modulus Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Linear%20Viscoelastic%20Behavior%20of%20Asphalt%20Concrete%20Using%20Complex%20Modulus%20Model&rft.jtitle=Journal%20of%20materials%20in%20civil%20engineering&rft.au=Zhao,%20Yanqing&rft.date=2013-10-01&rft.volume=25&rft.issue=10&rft.spage=1543&rft.epage=1548&rft.pages=1543-1548&rft.issn=0899-1561&rft.eissn=1943-5533&rft_id=info:doi/10.1061/(ASCE)MT.1943-5533.0000688&rft_dat=%3Cproquest_cross%3E1864532575%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a372t-9fdd058922c8cd265c7a544e5289a1445d6d4c2e1809bebb54c725139aff27543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864532575&rft_id=info:pmid/&rfr_iscdi=true