Loading…
Next generation high‐performance carbon fiber thermoplastic composites based on polyaryletherketones
ABSTRACT Interest in carbon fiber reinforced composites based on polyaryl ether ketones (PAEKs) continues to grow, and is driven by their increasing use as metal replacement materials in high temperature, high‐performance applications. Though these materials have seen widespread use in oil, gas, aer...
Saved in:
Published in: | Journal of applied polymer science 2017-02, Vol.134 (6), p.np-n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Interest in carbon fiber reinforced composites based on polyaryl ether ketones (PAEKs) continues to grow, and is driven by their increasing use as metal replacement materials in high temperature, high‐performance applications. Though these materials have seen widespread use in oil, gas, aerospace, medical and transportation industries, applications are currently limited by the thermal and mechanical properties of available PAEK polymer chemistries and their carbon fiber composites as well as interfacial bonding with carbon fiber surfaces. This article reviews the state of the art of PAEK polymer chemistries, mechanical properties of their carbon fiber reinforced composites, and interfacial engineering techniques used to improve the fiber‐matrix interfacial bond strength. We also propose a roadmap to develop the next generation of high‐performance long fiber thermoplastic composites based on PAEKs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44441. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.44441 |