Loading…

XPS Analysis of AuGeNi/Cleaved GaAs(110) Interface

The depth composition of the thin layer alloy, AuGeNi, devoted to acting as an ohmic contact on n-GaAs(110) has been investigated by in situ XPS combined with Argon ion sputtering techniques. The fresh cleaved surfaces, supposed to be free of oxygen, were usually deposited with a 200 nm metallic lay...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanomaterials 2016-01, Vol.2016 (2016), p.1-6
Main Authors: Trupina, Lucian, Ghita, R. V., Cotirlan, Costel, Logofatu, Constantin, Lazarescu, Mihail Florin, Negrila, C., Frumosu, Florica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The depth composition of the thin layer alloy, AuGeNi, devoted to acting as an ohmic contact on n-GaAs(110) has been investigated by in situ XPS combined with Argon ion sputtering techniques. The fresh cleaved surfaces, supposed to be free of oxygen, were usually deposited with a 200 nm metallic layer in high vacuum conditions (better than 10−7 torr), by thermal evaporation, and annealed at a 430–450° Celsius temperature for 5 minutes. About 18 sessions of ion Ar surfaces etching and intermediate XPS measurements were performed in order to reveal the border of the metal/semiconductor interface. The atomic concentrations of the chemical elements have been approximated. Au4f, Ga3d, Ga2p, As3d, As2p, Ni2p3/2, Ge3d, O1s, and C1s spectral lines were recorded. The Au, Ge, and Ni have a homogenous distribution while Ga and As tend to diffuse to the surface. Oxygen is present in the first layers of the surface while carbon completely disappears after the second etching step. The existence of an Au-Ga alloy was detected and XPS spectra show only metal Ni and Ge within the layer and at the interface. We tried to perform a study about the depth chemical composition profile analysis of AuGeNi layer on cleaved n-GaAs(110) by X-Ray Photoelectron Spectroscopy (XPS) technique.
ISSN:1687-4110
1687-4129
DOI:10.1155/2016/7574526