Loading…
Visual Monitoring of Food Spoilage Based on Hydrolysis-Induced Silver Metallization of Au Nanorods
Colorimetric detection of biogenic amines, well-known indicators of food spoilage, plays an important role for monitoring of food safety. However, common colorimetric sensors for biogenic amines suffer from low color resolution or complicated design and intricate output for the end-users. Herein, we...
Saved in:
Published in: | Analytical chemistry (Washington) 2016-11, Vol.88 (22), p.11022-11027 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Colorimetric detection of biogenic amines, well-known indicators of food spoilage, plays an important role for monitoring of food safety. However, common colorimetric sensors for biogenic amines suffer from low color resolution or complicated design and intricate output for the end-users. Herein, we explored a simple but effective strategy for visual monitoring of biogenic amines with multiple color change based on hydrolysis-induced silver metallization reaction to tune the localized surface plasmon resonance (LSPR) adsorption of Au nanorods (NRs). The color change and blue shift of longitudinal LSPR peak of Au NRs were closely related to the concentration of biogenic amines. This strategy provided a simple, sensitive, robust, nondestructive, cost-effective, and user-friendly platform for in situ evaluating the freshness of foodstuffs. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.6b02870 |