Loading…

Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices

AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanomechanics and micromechanics 2014-03, Vol.4 (1)
Main Authors: Zingales, Massimiliano, Failla, Giuseppe, Rizzo, Umberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853
cites cdi_FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853
container_end_page
container_issue 1
container_start_page
container_title Journal of nanomechanics and micromechanics
container_volume 4
creator Zingales, Massimiliano
Failla, Giuseppe
Rizzo, Umberto
description AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integer-order operators of classical differential calculus with their real-order counterparts. In this study, the authors aim to extend a recently proposed physical picture of fractional-order thermodynamics to a generic 3D rigid heat conductor where the thermal energy transfer is due to two phenomena: a short-range heat flux ruled by stationary and nonstationary transport equations, and a long-range thermal energy transport representing a ballistic effects among thermal energy propagators. Thermodynamic consistency of the model is investigated introducing the state function of the temperature field, namely the entropy, and obtaining the thermodynamic restrictions on the signs of the coefficients involved in the proposed model of fractional-order thermodynamics. Finally, numerical applications are presented for both 1D and 2D rigid bodies.
doi_str_mv 10.1061/(ASCE)NM.2153-5477.0000074
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864537262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864537262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853</originalsourceid><addsrcrecordid>eNp1kE1vwjAMhqNpk4Y2_kO1EzuUJU3SJrshBtskPg6wc5QGlxWFljllEv9-rUDc5ost-3l9eAh5YnTIaMpeBqPVePK8mA8TJnksRZYNaVeZuCG96-72OnNxT_oh7DpGCsW06pH5FK1ryrqyPl7iBjBafwPurY8mFeD2FK3RVuFQYxMVNUar9uLjlbMeWmBbVgBYVtvoDX5LB-GR3BXWB-hf-gP5mk7W4494tnz_HI9mseWaNzFwkTgKTgnmLNjUAVfC5nkuqdgoljMlc0adprmQYDUtnHYbqjPFEu1ASf5ABue_B6x_jhAasy-DA-9tBfUxGKZSIXmWpEmLvp5Rh3UICIU5YLm3eDKMmk6jMZ1Gs5ibTpPplJmLxjacnsO2_W529RFbT-Ga_D_4B-AFdr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864537262</pqid></control><display><type>article</type><title>Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices</title><source>American Society Of Civil Engineers ASCE Journals</source><creator>Zingales, Massimiliano ; Failla, Giuseppe ; Rizzo, Umberto</creator><creatorcontrib>Zingales, Massimiliano ; Failla, Giuseppe ; Rizzo, Umberto</creatorcontrib><description>AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integer-order operators of classical differential calculus with their real-order counterparts. In this study, the authors aim to extend a recently proposed physical picture of fractional-order thermodynamics to a generic 3D rigid heat conductor where the thermal energy transfer is due to two phenomena: a short-range heat flux ruled by stationary and nonstationary transport equations, and a long-range thermal energy transport representing a ballistic effects among thermal energy propagators. Thermodynamic consistency of the model is investigated introducing the state function of the temperature field, namely the entropy, and obtaining the thermodynamic restrictions on the signs of the coefficients involved in the proposed model of fractional-order thermodynamics. Finally, numerical applications are presented for both 1D and 2D rigid bodies.</description><identifier>ISSN: 2153-5434</identifier><identifier>EISSN: 2153-5477</identifier><identifier>DOI: 10.1061/(ASCE)NM.2153-5477.0000074</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Entropy ; Mathematical models ; Nanostructure ; Rigid-body dynamics ; Small scale ; Technical Papers ; Thermal energy ; Thermodynamics ; Transport</subject><ispartof>Journal of nanomechanics and micromechanics, 2014-03, Vol.4 (1)</ispartof><rights>2013 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853</citedby><cites>FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)NM.2153-5477.0000074$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)NM.2153-5477.0000074$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3251,10067,27923,27924,76062,76070</link.rule.ids></links><search><creatorcontrib>Zingales, Massimiliano</creatorcontrib><creatorcontrib>Failla, Giuseppe</creatorcontrib><creatorcontrib>Rizzo, Umberto</creatorcontrib><title>Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices</title><title>Journal of nanomechanics and micromechanics</title><description>AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integer-order operators of classical differential calculus with their real-order counterparts. In this study, the authors aim to extend a recently proposed physical picture of fractional-order thermodynamics to a generic 3D rigid heat conductor where the thermal energy transfer is due to two phenomena: a short-range heat flux ruled by stationary and nonstationary transport equations, and a long-range thermal energy transport representing a ballistic effects among thermal energy propagators. Thermodynamic consistency of the model is investigated introducing the state function of the temperature field, namely the entropy, and obtaining the thermodynamic restrictions on the signs of the coefficients involved in the proposed model of fractional-order thermodynamics. Finally, numerical applications are presented for both 1D and 2D rigid bodies.</description><subject>Entropy</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Rigid-body dynamics</subject><subject>Small scale</subject><subject>Technical Papers</subject><subject>Thermal energy</subject><subject>Thermodynamics</subject><subject>Transport</subject><issn>2153-5434</issn><issn>2153-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1vwjAMhqNpk4Y2_kO1EzuUJU3SJrshBtskPg6wc5QGlxWFljllEv9-rUDc5ost-3l9eAh5YnTIaMpeBqPVePK8mA8TJnksRZYNaVeZuCG96-72OnNxT_oh7DpGCsW06pH5FK1ryrqyPl7iBjBafwPurY8mFeD2FK3RVuFQYxMVNUar9uLjlbMeWmBbVgBYVtvoDX5LB-GR3BXWB-hf-gP5mk7W4494tnz_HI9mseWaNzFwkTgKTgnmLNjUAVfC5nkuqdgoljMlc0adprmQYDUtnHYbqjPFEu1ASf5ABue_B6x_jhAasy-DA-9tBfUxGKZSIXmWpEmLvp5Rh3UICIU5YLm3eDKMmk6jMZ1Gs5ibTpPplJmLxjacnsO2_W529RFbT-Ga_D_4B-AFdr4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Zingales, Massimiliano</creator><creator>Failla, Giuseppe</creator><creator>Rizzo, Umberto</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices</title><author>Zingales, Massimiliano ; Failla, Giuseppe ; Rizzo, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Entropy</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Rigid-body dynamics</topic><topic>Small scale</topic><topic>Technical Papers</topic><topic>Thermal energy</topic><topic>Thermodynamics</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zingales, Massimiliano</creatorcontrib><creatorcontrib>Failla, Giuseppe</creatorcontrib><creatorcontrib>Rizzo, Umberto</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomechanics and micromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zingales, Massimiliano</au><au>Failla, Giuseppe</au><au>Rizzo, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices</atitle><jtitle>Journal of nanomechanics and micromechanics</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><issn>2153-5434</issn><eissn>2153-5477</eissn><abstract>AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integer-order operators of classical differential calculus with their real-order counterparts. In this study, the authors aim to extend a recently proposed physical picture of fractional-order thermodynamics to a generic 3D rigid heat conductor where the thermal energy transfer is due to two phenomena: a short-range heat flux ruled by stationary and nonstationary transport equations, and a long-range thermal energy transport representing a ballistic effects among thermal energy propagators. Thermodynamic consistency of the model is investigated introducing the state function of the temperature field, namely the entropy, and obtaining the thermodynamic restrictions on the signs of the coefficients involved in the proposed model of fractional-order thermodynamics. Finally, numerical applications are presented for both 1D and 2D rigid bodies.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)NM.2153-5477.0000074</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2153-5434
ispartof Journal of nanomechanics and micromechanics, 2014-03, Vol.4 (1)
issn 2153-5434
2153-5477
language eng
recordid cdi_proquest_miscellaneous_1864537262
source American Society Of Civil Engineers ASCE Journals
subjects Entropy
Mathematical models
Nanostructure
Rigid-body dynamics
Small scale
Technical Papers
Thermal energy
Thermodynamics
Transport
title Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional-Order%20Thermal%20Energy%20Transport%20for%20Small-Scale%20Engineering%20Devices&rft.jtitle=Journal%20of%20nanomechanics%20and%20micromechanics&rft.au=Zingales,%20Massimiliano&rft.date=2014-03-01&rft.volume=4&rft.issue=1&rft.issn=2153-5434&rft.eissn=2153-5477&rft_id=info:doi/10.1061/(ASCE)NM.2153-5477.0000074&rft_dat=%3Cproquest_cross%3E1864537262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864537262&rft_id=info:pmid/&rfr_iscdi=true