Loading…
Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices
AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integ...
Saved in:
Published in: | Journal of nanomechanics and micromechanics 2014-03, Vol.4 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853 |
---|---|
cites | cdi_FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of nanomechanics and micromechanics |
container_volume | 4 |
creator | Zingales, Massimiliano Failla, Giuseppe Rizzo, Umberto |
description | AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integer-order operators of classical differential calculus with their real-order counterparts. In this study, the authors aim to extend a recently proposed physical picture of fractional-order thermodynamics to a generic 3D rigid heat conductor where the thermal energy transfer is due to two phenomena: a short-range heat flux ruled by stationary and nonstationary transport equations, and a long-range thermal energy transport representing a ballistic effects among thermal energy propagators. Thermodynamic consistency of the model is investigated introducing the state function of the temperature field, namely the entropy, and obtaining the thermodynamic restrictions on the signs of the coefficients involved in the proposed model of fractional-order thermodynamics. Finally, numerical applications are presented for both 1D and 2D rigid bodies. |
doi_str_mv | 10.1061/(ASCE)NM.2153-5477.0000074 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864537262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864537262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853</originalsourceid><addsrcrecordid>eNp1kE1vwjAMhqNpk4Y2_kO1EzuUJU3SJrshBtskPg6wc5QGlxWFljllEv9-rUDc5ost-3l9eAh5YnTIaMpeBqPVePK8mA8TJnksRZYNaVeZuCG96-72OnNxT_oh7DpGCsW06pH5FK1ryrqyPl7iBjBafwPurY8mFeD2FK3RVuFQYxMVNUar9uLjlbMeWmBbVgBYVtvoDX5LB-GR3BXWB-hf-gP5mk7W4494tnz_HI9mseWaNzFwkTgKTgnmLNjUAVfC5nkuqdgoljMlc0adprmQYDUtnHYbqjPFEu1ASf5ABue_B6x_jhAasy-DA-9tBfUxGKZSIXmWpEmLvp5Rh3UICIU5YLm3eDKMmk6jMZ1Gs5ibTpPplJmLxjacnsO2_W529RFbT-Ga_D_4B-AFdr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864537262</pqid></control><display><type>article</type><title>Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices</title><source>American Society Of Civil Engineers ASCE Journals</source><creator>Zingales, Massimiliano ; Failla, Giuseppe ; Rizzo, Umberto</creator><creatorcontrib>Zingales, Massimiliano ; Failla, Giuseppe ; Rizzo, Umberto</creatorcontrib><description>AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integer-order operators of classical differential calculus with their real-order counterparts. In this study, the authors aim to extend a recently proposed physical picture of fractional-order thermodynamics to a generic 3D rigid heat conductor where the thermal energy transfer is due to two phenomena: a short-range heat flux ruled by stationary and nonstationary transport equations, and a long-range thermal energy transport representing a ballistic effects among thermal energy propagators. Thermodynamic consistency of the model is investigated introducing the state function of the temperature field, namely the entropy, and obtaining the thermodynamic restrictions on the signs of the coefficients involved in the proposed model of fractional-order thermodynamics. Finally, numerical applications are presented for both 1D and 2D rigid bodies.</description><identifier>ISSN: 2153-5434</identifier><identifier>EISSN: 2153-5477</identifier><identifier>DOI: 10.1061/(ASCE)NM.2153-5477.0000074</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Entropy ; Mathematical models ; Nanostructure ; Rigid-body dynamics ; Small scale ; Technical Papers ; Thermal energy ; Thermodynamics ; Transport</subject><ispartof>Journal of nanomechanics and micromechanics, 2014-03, Vol.4 (1)</ispartof><rights>2013 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853</citedby><cites>FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)NM.2153-5477.0000074$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)NM.2153-5477.0000074$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3251,10067,27923,27924,76062,76070</link.rule.ids></links><search><creatorcontrib>Zingales, Massimiliano</creatorcontrib><creatorcontrib>Failla, Giuseppe</creatorcontrib><creatorcontrib>Rizzo, Umberto</creatorcontrib><title>Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices</title><title>Journal of nanomechanics and micromechanics</title><description>AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integer-order operators of classical differential calculus with their real-order counterparts. In this study, the authors aim to extend a recently proposed physical picture of fractional-order thermodynamics to a generic 3D rigid heat conductor where the thermal energy transfer is due to two phenomena: a short-range heat flux ruled by stationary and nonstationary transport equations, and a long-range thermal energy transport representing a ballistic effects among thermal energy propagators. Thermodynamic consistency of the model is investigated introducing the state function of the temperature field, namely the entropy, and obtaining the thermodynamic restrictions on the signs of the coefficients involved in the proposed model of fractional-order thermodynamics. Finally, numerical applications are presented for both 1D and 2D rigid bodies.</description><subject>Entropy</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Rigid-body dynamics</subject><subject>Small scale</subject><subject>Technical Papers</subject><subject>Thermal energy</subject><subject>Thermodynamics</subject><subject>Transport</subject><issn>2153-5434</issn><issn>2153-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1vwjAMhqNpk4Y2_kO1EzuUJU3SJrshBtskPg6wc5QGlxWFljllEv9-rUDc5ost-3l9eAh5YnTIaMpeBqPVePK8mA8TJnksRZYNaVeZuCG96-72OnNxT_oh7DpGCsW06pH5FK1ryrqyPl7iBjBafwPurY8mFeD2FK3RVuFQYxMVNUar9uLjlbMeWmBbVgBYVtvoDX5LB-GR3BXWB-hf-gP5mk7W4494tnz_HI9mseWaNzFwkTgKTgnmLNjUAVfC5nkuqdgoljMlc0adprmQYDUtnHYbqjPFEu1ASf5ABue_B6x_jhAasy-DA-9tBfUxGKZSIXmWpEmLvp5Rh3UICIU5YLm3eDKMmk6jMZ1Gs5ibTpPplJmLxjacnsO2_W529RFbT-Ga_D_4B-AFdr4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Zingales, Massimiliano</creator><creator>Failla, Giuseppe</creator><creator>Rizzo, Umberto</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices</title><author>Zingales, Massimiliano ; Failla, Giuseppe ; Rizzo, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Entropy</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Rigid-body dynamics</topic><topic>Small scale</topic><topic>Technical Papers</topic><topic>Thermal energy</topic><topic>Thermodynamics</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zingales, Massimiliano</creatorcontrib><creatorcontrib>Failla, Giuseppe</creatorcontrib><creatorcontrib>Rizzo, Umberto</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomechanics and micromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zingales, Massimiliano</au><au>Failla, Giuseppe</au><au>Rizzo, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices</atitle><jtitle>Journal of nanomechanics and micromechanics</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><issn>2153-5434</issn><eissn>2153-5477</eissn><abstract>AbstractFractional-order thermodynamics has proved to be an efficient tool to describe several small-scale and/or high-frequency thermodynamic processes, as shown in many engineering and physics applications. The main idea beyond fractional-order physics and engineering relies on replacing the integer-order operators of classical differential calculus with their real-order counterparts. In this study, the authors aim to extend a recently proposed physical picture of fractional-order thermodynamics to a generic 3D rigid heat conductor where the thermal energy transfer is due to two phenomena: a short-range heat flux ruled by stationary and nonstationary transport equations, and a long-range thermal energy transport representing a ballistic effects among thermal energy propagators. Thermodynamic consistency of the model is investigated introducing the state function of the temperature field, namely the entropy, and obtaining the thermodynamic restrictions on the signs of the coefficients involved in the proposed model of fractional-order thermodynamics. Finally, numerical applications are presented for both 1D and 2D rigid bodies.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)NM.2153-5477.0000074</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2153-5434 |
ispartof | Journal of nanomechanics and micromechanics, 2014-03, Vol.4 (1) |
issn | 2153-5434 2153-5477 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864537262 |
source | American Society Of Civil Engineers ASCE Journals |
subjects | Entropy Mathematical models Nanostructure Rigid-body dynamics Small scale Technical Papers Thermal energy Thermodynamics Transport |
title | Fractional-Order Thermal Energy Transport for Small-Scale Engineering Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional-Order%20Thermal%20Energy%20Transport%20for%20Small-Scale%20Engineering%20Devices&rft.jtitle=Journal%20of%20nanomechanics%20and%20micromechanics&rft.au=Zingales,%20Massimiliano&rft.date=2014-03-01&rft.volume=4&rft.issue=1&rft.issn=2153-5434&rft.eissn=2153-5477&rft_id=info:doi/10.1061/(ASCE)NM.2153-5477.0000074&rft_dat=%3Cproquest_cross%3E1864537262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a393t-e342c0ec841caea6ce384abbb504d81b185b10c90b45ea90fc9cd0978129ce853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864537262&rft_id=info:pmid/&rfr_iscdi=true |