Loading…

Synthesis of lithium titanium oxide (Li sub(4)Ti sub(5)O sub(12)) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries

Lithium titanium oxide (LTO: Li sub(4)Ti sub(5)O sub(12)) particles were produced via a continuous supercritical fluid process for use as anodes in lithium ion batteries. The synthesized LTO particles in supercritical water (scH sub(2)O) or in supercritical methanol (scMeOH) generate nanoparticles o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2016-07, Vol.51 (13), p.6220-6234
Main Authors: Hong, Seung-Ah, Lee, Sue Bin, Joo, Oh-Sim, Kang, Jeong Won, Cho, Byung-Won, Lim, Jong-Sung
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lithium titanium oxide (LTO: Li sub(4)Ti sub(5)O sub(12)) particles were produced via a continuous supercritical fluid process for use as anodes in lithium ion batteries. The synthesized LTO particles in supercritical water (scH sub(2)O) or in supercritical methanol (scMeOH) generate nanoparticles of 10-30 nm sizes, and the modified LTO particles using oleylamine in scMeOH affects the inhibition of particle growth. The modified LTO particle was coated by the usage of supercritical carbon dioxide (scCO sub(2)) and polyethylene glycol (PEG-400). The conformal coverage of the carbon layer on LTO particles with a thickness of 1.2 nm, and a uniform distribution of carbon on the entire surface of LTO particles are confirmed. The modified and carbon-coated LTO with a carbon content of 5.3 wt% exhibits a high discharge capacity of 175 mAh/g (which approaches the theoretical value of LTO) at 0.1 C and 83 mAh/g at 50 C. The carbon-coated LTO prepared using supercritical fluids delivered 160, 153, 123 mAh/g at 1 C and 60 degree C, room temperature, and -25 degree C, respectively.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-016-9920-9