Loading…
Some new classes of graceful diameter six trees
Here we denote a diameter six tree by (a0; a1, a2; . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr), where a0 is the center of the tree; ai; i = 1, 2, . . . ,m, bj , j = 1, 2, . . . , n, and ck, k = 1, 2, . . . , r are the vertices of the tree adjacent to a0; each ai is the center of a diameter f...
Saved in:
Published in: | TWMS journal of applied and engineering mathematics 2015-07, Vol.5 (2), p.269-269 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 269 |
container_issue | 2 |
container_start_page | 269 |
container_title | TWMS journal of applied and engineering mathematics |
container_volume | 5 |
creator | Panda, Amaresh Chandra Mishra, Debdas |
description | Here we denote a diameter six tree by (a0; a1, a2; . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr), where a0 is the center of the tree; ai; i = 1, 2, . . . ,m, bj , j = 1, 2, . . . , n, and ck, k = 1, 2, . . . , r are the vertices of the tree adjacent to a0; each ai is the center of a diameter four tree, each bj is the center of a star, and each ck is a pen-dant vertex. Here we give graceful labelings to some new classes of diameter six trees (a0; a1, a2, . . . , am; b1, b2, . . . ; bn; c1, c2, . . . , cr) in which the branches of a diameter four tree incident on a0 are of same type, i.e. either they are all odd branches or even branches. Here by a branch we mean a star, i.e. we call a star an odd branch if its center has an odd degree and an even branch if its center has an even degree. |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864550025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A450799220</galeid><sourcerecordid>A450799220</sourcerecordid><originalsourceid>FETCH-LOGICAL-g213t-b8a708631b8cdbdf6b9ee243d54e704a8e8709c8395c2f8fc2abbcf4272ac7e93</originalsourceid><addsrcrecordid>eNptj01LxDAQhosouKz7HwJevFTz_XFcFj8WFjyo55KkkyVL22jToj_fiIKLOHOYl-GZd2ZOqgUlXNaEcHV6pM-rVc4HXEJLqTBbVDdPqQc0wDvync0ZMkoB7UfrIcwdaqPtYYIR5fiBphEgX1RnwXYZVj91Wb3c3T5vHurd4_12s97Ve0rYVDttVdnBiNO-dW2QzgBQzlrBQWFuNWiFjdfMCE-DDp5a53zgVFHrFRi2rK6-fV_H9DZDnpo-Zg9dZwdIc26IllwIjKko6OUf9JDmcSjXNURJTgwTmP1Se9tBE4eQpvLll2mz5gIrYyjFhbr-hyrZQh99GiDE0j8a-ASkDmnr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764193503</pqid></control><display><type>article</type><title>Some new classes of graceful diameter six trees</title><source>ProQuest - Publicly Available Content Database</source><creator>Panda, Amaresh Chandra ; Mishra, Debdas</creator><creatorcontrib>Panda, Amaresh Chandra ; Mishra, Debdas</creatorcontrib><description>Here we denote a diameter six tree by (a0; a1, a2; . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr), where a0 is the center of the tree; ai; i = 1, 2, . . . ,m, bj , j = 1, 2, . . . , n, and ck, k = 1, 2, . . . , r are the vertices of the tree adjacent to a0; each ai is the center of a diameter four tree, each bj is the center of a star, and each ck is a pen-dant vertex. Here we give graceful labelings to some new classes of diameter six trees (a0; a1, a2, . . . , am; b1, b2, . . . ; bn; c1, c2, . . . , cr) in which the branches of a diameter four tree incident on a0 are of same type, i.e. either they are all odd branches or even branches. Here by a branch we mean a star, i.e. we call a star an odd branch if its center has an odd degree and an even branch if its center has an even degree.</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><subject>Analysis ; Integer programming ; Labels ; Marking ; Mathematical analysis ; Proof theory ; Theorems ; Trees ; Trees (Graph theory)</subject><ispartof>TWMS journal of applied and engineering mathematics, 2015-07, Vol.5 (2), p.269-269</ispartof><rights>COPYRIGHT 2015 Turkic World Mathematical Society</rights><rights>Copyright Elman Hasanoglu 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1764193503?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>Panda, Amaresh Chandra</creatorcontrib><creatorcontrib>Mishra, Debdas</creatorcontrib><title>Some new classes of graceful diameter six trees</title><title>TWMS journal of applied and engineering mathematics</title><description>Here we denote a diameter six tree by (a0; a1, a2; . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr), where a0 is the center of the tree; ai; i = 1, 2, . . . ,m, bj , j = 1, 2, . . . , n, and ck, k = 1, 2, . . . , r are the vertices of the tree adjacent to a0; each ai is the center of a diameter four tree, each bj is the center of a star, and each ck is a pen-dant vertex. Here we give graceful labelings to some new classes of diameter six trees (a0; a1, a2, . . . , am; b1, b2, . . . ; bn; c1, c2, . . . , cr) in which the branches of a diameter four tree incident on a0 are of same type, i.e. either they are all odd branches or even branches. Here by a branch we mean a star, i.e. we call a star an odd branch if its center has an odd degree and an even branch if its center has an even degree.</description><subject>Analysis</subject><subject>Integer programming</subject><subject>Labels</subject><subject>Marking</subject><subject>Mathematical analysis</subject><subject>Proof theory</subject><subject>Theorems</subject><subject>Trees</subject><subject>Trees (Graph theory)</subject><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptj01LxDAQhosouKz7HwJevFTz_XFcFj8WFjyo55KkkyVL22jToj_fiIKLOHOYl-GZd2ZOqgUlXNaEcHV6pM-rVc4HXEJLqTBbVDdPqQc0wDvync0ZMkoB7UfrIcwdaqPtYYIR5fiBphEgX1RnwXYZVj91Wb3c3T5vHurd4_12s97Ve0rYVDttVdnBiNO-dW2QzgBQzlrBQWFuNWiFjdfMCE-DDp5a53zgVFHrFRi2rK6-fV_H9DZDnpo-Zg9dZwdIc26IllwIjKko6OUf9JDmcSjXNURJTgwTmP1Se9tBE4eQpvLll2mz5gIrYyjFhbr-hyrZQh99GiDE0j8a-ASkDmnr</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Panda, Amaresh Chandra</creator><creator>Mishra, Debdas</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150701</creationdate><title>Some new classes of graceful diameter six trees</title><author>Panda, Amaresh Chandra ; Mishra, Debdas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g213t-b8a708631b8cdbdf6b9ee243d54e704a8e8709c8395c2f8fc2abbcf4272ac7e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Integer programming</topic><topic>Labels</topic><topic>Marking</topic><topic>Mathematical analysis</topic><topic>Proof theory</topic><topic>Theorems</topic><topic>Trees</topic><topic>Trees (Graph theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panda, Amaresh Chandra</creatorcontrib><creatorcontrib>Mishra, Debdas</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panda, Amaresh Chandra</au><au>Mishra, Debdas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some new classes of graceful diameter six trees</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>5</volume><issue>2</issue><spage>269</spage><epage>269</epage><pages>269-269</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>Here we denote a diameter six tree by (a0; a1, a2; . . . , am; b1, b2, . . . , bn; c1, c2, . . . , cr), where a0 is the center of the tree; ai; i = 1, 2, . . . ,m, bj , j = 1, 2, . . . , n, and ck, k = 1, 2, . . . , r are the vertices of the tree adjacent to a0; each ai is the center of a diameter four tree, each bj is the center of a star, and each ck is a pen-dant vertex. Here we give graceful labelings to some new classes of diameter six trees (a0; a1, a2, . . . , am; b1, b2, . . . ; bn; c1, c2, . . . , cr) in which the branches of a diameter four tree incident on a0 are of same type, i.e. either they are all odd branches or even branches. Here by a branch we mean a star, i.e. we call a star an odd branch if its center has an odd degree and an even branch if its center has an even degree.</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2146-1147 |
ispartof | TWMS journal of applied and engineering mathematics, 2015-07, Vol.5 (2), p.269-269 |
issn | 2146-1147 2146-1147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864550025 |
source | ProQuest - Publicly Available Content Database |
subjects | Analysis Integer programming Labels Marking Mathematical analysis Proof theory Theorems Trees Trees (Graph theory) |
title | Some new classes of graceful diameter six trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20new%20classes%20of%20graceful%20diameter%20six%20trees&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Panda,%20Amaresh%20Chandra&rft.date=2015-07-01&rft.volume=5&rft.issue=2&rft.spage=269&rft.epage=269&rft.pages=269-269&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA450799220%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g213t-b8a708631b8cdbdf6b9ee243d54e704a8e8709c8395c2f8fc2abbcf4272ac7e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1764193503&rft_id=info:pmid/&rft_galeid=A450799220&rfr_iscdi=true |