Loading…

Three-dimensional gold nanoparticles/prussian blue-poly(3,4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen

We present a novel label-free electrochemical immunosensor for detecting carcinoembryonic antigen (CEA) based on three-dimensional (3D) gold nanoparticles/prussian blue-poly(3,4-ethylenedioxythiophene) (AuNPs/PB-PEDOT) nanocomposite, which was firstly synthesized by a simple redox reaction between t...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2017-02, Vol.239, p.76-84
Main Authors: Yang, Taotao, Gao, Yansha, Liu, Zhen, Xu, Jingkun, Lu, Limin, Yu, Yongfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a novel label-free electrochemical immunosensor for detecting carcinoembryonic antigen (CEA) based on three-dimensional (3D) gold nanoparticles/prussian blue-poly(3,4-ethylenedioxythiophene) (AuNPs/PB-PEDOT) nanocomposite, which was firstly synthesized by a simple redox reaction between the PB precursors and EDOT in an aqueous solution, followed by the electrochemical reduction of HAuCl4. The 3D nanocomposite not only possessed large surface area and favorable microenvironment, but also exhibited remarkable conductivity, stability and excellent biocompatibility. In addition, PB showed excellent redox properties. Then AuNPs/PB-PEDOT was used as both electron mediators and 3D matrices in the fabrication of immunosensor. FT-IR spectra were employed to confirm the formation of PB, PEDOT and PB-PEDOT. Significantly, the AuNPs/PB-PEDOT exhibited a 3D and hierarchically porous nanostructure, while the PB-PEDOT showed core-shell structure. The AuNPs/PB-PEDOT modified immunosensor showed good linearity with the concentration of CEA ranging from 0.05 to 40ngmL−1, and the detection limit was 0.01ngmL−1. Moreover, the prepared electrode displayed good selectivity, high stability and good repeatability, and showed great potential for application in real sample analysis.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2016.08.001