Loading…

Effect of Cross-Flow Velocity at Forebay on Swirl in Pump Suction Pipe: Hydraulic Model of Seawater Intake at Aliveri Power Plant in Greece

AbstractThe hydraulic performance of pumps in a cooling water intake is directly affected by the nonuniformity of the approach flow at each pump bay, which in turn is influenced by the strength of the cross-flow at the pumps’ common forebay. The effect of the cross-flow velocity at the forebay on th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2012-09, Vol.138 (9), p.812-816
Main Authors: Dimas, Athanassios A, Vouros, Andreas P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a405t-9f9b5b3176f624e3b913686a5c753864e5dc5b97885cbbc622ab69fa84de0dd33
cites cdi_FETCH-LOGICAL-a405t-9f9b5b3176f624e3b913686a5c753864e5dc5b97885cbbc622ab69fa84de0dd33
container_end_page 816
container_issue 9
container_start_page 812
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 138
creator Dimas, Athanassios A
Vouros, Andreas P
description AbstractThe hydraulic performance of pumps in a cooling water intake is directly affected by the nonuniformity of the approach flow at each pump bay, which in turn is influenced by the strength of the cross-flow at the pumps’ common forebay. The effect of the cross-flow velocity at the forebay on the swirl angle in the pump suction pipes is investigated in a hydraulic model of the seawater intake at the Aliveri Power Plant in Greece. The particular intake features two pumps, and a total of 10 cases were examined based on differing values of water depth, number of pumps in operation, and pump flow rate. Velocity measurements at the forebay-dividing cross section were obtained by an acoustic Doppler velocimeter (ADV), while swirl angle in the suction pipe was measured by a vortimeter. A highly nonuniform velocity profile develops at the forebay, when one of the two cleaning channels is closed, and the swirl angle depends solely on the intake forebay geometry when the mean cross-flow velocity drops below a critical value.
doi_str_mv 10.1061/(ASCE)HY.1943-7900.0000576
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864552114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855078585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-9f9b5b3176f624e3b913686a5c753864e5dc5b97885cbbc622ab69fa84de0dd33</originalsourceid><addsrcrecordid>eNqNkV2LEzEUhgdRsK7-hyAI68XUZPIxk70rpd0urFioCnsVMpkTyJpOajKzpb_BP22Glt4J5ibw8uQ54bxF8ZHgOcGCfLld7Jarz5unOZGMlrXEeI7z4bV4Vcyu2etihmtKS8kq-bZ4l9IzxoQJ2cyKPytrwQwoWLSMIaVy7cMR_QQfjBtOSA9oHSK0-oRCj3ZHFz1yPdqO-wPajWZwOd26A9yhzamLevTOoK-hAz8Jd6CPeoCIHvpB_4JJtvDuBaJD23DM-dbrfph89xHAwPvijdU-wYfLfVP8WK--Lzfl47f7h-XisdQM86GUVra8paQWVlQMaCsJFY3Q3NScNoIB7wxvZd003LStEVWlWyGtblgHuOsovSluz95DDL9HSIPau2TA599AGJMiWcJ5RQj7D5RzXDe84Rm9O6Nm2mMEqw7R7XU8KYLVVJZSU1lq86SmYtRUjLqUlR9_uszRyWhvo-6NS1dDJWgtGSeZE2cuY6Cewxj7vKnrhH8P-Au_FaWR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855078585</pqid></control><display><type>article</type><title>Effect of Cross-Flow Velocity at Forebay on Swirl in Pump Suction Pipe: Hydraulic Model of Seawater Intake at Aliveri Power Plant in Greece</title><source>American Society of Civil Engineers</source><creator>Dimas, Athanassios A ; Vouros, Andreas P</creator><creatorcontrib>Dimas, Athanassios A ; Vouros, Andreas P</creatorcontrib><description>AbstractThe hydraulic performance of pumps in a cooling water intake is directly affected by the nonuniformity of the approach flow at each pump bay, which in turn is influenced by the strength of the cross-flow at the pumps’ common forebay. The effect of the cross-flow velocity at the forebay on the swirl angle in the pump suction pipes is investigated in a hydraulic model of the seawater intake at the Aliveri Power Plant in Greece. The particular intake features two pumps, and a total of 10 cases were examined based on differing values of water depth, number of pumps in operation, and pump flow rate. Velocity measurements at the forebay-dividing cross section were obtained by an acoustic Doppler velocimeter (ADV), while swirl angle in the suction pipe was measured by a vortimeter. A highly nonuniform velocity profile develops at the forebay, when one of the two cleaning channels is closed, and the swirl angle depends solely on the intake forebay geometry when the mean cross-flow velocity drops below a critical value.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)HY.1943-7900.0000576</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Angles (geometry) ; Applied sciences ; Case Studies ; Case Study ; Cross flow ; Electric power generation ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Installations for energy generation and conversion: thermal and electrical energy ; Intakes ; Marine ; Pipe ; Pumps ; Sea water ; Suction ; Thermal power plants</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2012-09, Vol.138 (9), p.812-816</ispartof><rights>2012 American Society of Civil Engineers</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-9f9b5b3176f624e3b913686a5c753864e5dc5b97885cbbc622ab69fa84de0dd33</citedby><cites>FETCH-LOGICAL-a405t-9f9b5b3176f624e3b913686a5c753864e5dc5b97885cbbc622ab69fa84de0dd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HY.1943-7900.0000576$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HY.1943-7900.0000576$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3252,10068,27924,27925,76191,76199</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26379451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimas, Athanassios A</creatorcontrib><creatorcontrib>Vouros, Andreas P</creatorcontrib><title>Effect of Cross-Flow Velocity at Forebay on Swirl in Pump Suction Pipe: Hydraulic Model of Seawater Intake at Aliveri Power Plant in Greece</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>AbstractThe hydraulic performance of pumps in a cooling water intake is directly affected by the nonuniformity of the approach flow at each pump bay, which in turn is influenced by the strength of the cross-flow at the pumps’ common forebay. The effect of the cross-flow velocity at the forebay on the swirl angle in the pump suction pipes is investigated in a hydraulic model of the seawater intake at the Aliveri Power Plant in Greece. The particular intake features two pumps, and a total of 10 cases were examined based on differing values of water depth, number of pumps in operation, and pump flow rate. Velocity measurements at the forebay-dividing cross section were obtained by an acoustic Doppler velocimeter (ADV), while swirl angle in the suction pipe was measured by a vortimeter. A highly nonuniform velocity profile develops at the forebay, when one of the two cleaning channels is closed, and the swirl angle depends solely on the intake forebay geometry when the mean cross-flow velocity drops below a critical value.</description><subject>Angles (geometry)</subject><subject>Applied sciences</subject><subject>Case Studies</subject><subject>Case Study</subject><subject>Cross flow</subject><subject>Electric power generation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Intakes</subject><subject>Marine</subject><subject>Pipe</subject><subject>Pumps</subject><subject>Sea water</subject><subject>Suction</subject><subject>Thermal power plants</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkV2LEzEUhgdRsK7-hyAI68XUZPIxk70rpd0urFioCnsVMpkTyJpOajKzpb_BP22Glt4J5ibw8uQ54bxF8ZHgOcGCfLld7Jarz5unOZGMlrXEeI7z4bV4Vcyu2etihmtKS8kq-bZ4l9IzxoQJ2cyKPytrwQwoWLSMIaVy7cMR_QQfjBtOSA9oHSK0-oRCj3ZHFz1yPdqO-wPajWZwOd26A9yhzamLevTOoK-hAz8Jd6CPeoCIHvpB_4JJtvDuBaJD23DM-dbrfph89xHAwPvijdU-wYfLfVP8WK--Lzfl47f7h-XisdQM86GUVra8paQWVlQMaCsJFY3Q3NScNoIB7wxvZd003LStEVWlWyGtblgHuOsovSluz95DDL9HSIPau2TA599AGJMiWcJ5RQj7D5RzXDe84Rm9O6Nm2mMEqw7R7XU8KYLVVJZSU1lq86SmYtRUjLqUlR9_uszRyWhvo-6NS1dDJWgtGSeZE2cuY6Cewxj7vKnrhH8P-Au_FaWR</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Dimas, Athanassios A</creator><creator>Vouros, Andreas P</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120901</creationdate><title>Effect of Cross-Flow Velocity at Forebay on Swirl in Pump Suction Pipe: Hydraulic Model of Seawater Intake at Aliveri Power Plant in Greece</title><author>Dimas, Athanassios A ; Vouros, Andreas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-9f9b5b3176f624e3b913686a5c753864e5dc5b97885cbbc622ab69fa84de0dd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Angles (geometry)</topic><topic>Applied sciences</topic><topic>Case Studies</topic><topic>Case Study</topic><topic>Cross flow</topic><topic>Electric power generation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Intakes</topic><topic>Marine</topic><topic>Pipe</topic><topic>Pumps</topic><topic>Sea water</topic><topic>Suction</topic><topic>Thermal power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimas, Athanassios A</creatorcontrib><creatorcontrib>Vouros, Andreas P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimas, Athanassios A</au><au>Vouros, Andreas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Cross-Flow Velocity at Forebay on Swirl in Pump Suction Pipe: Hydraulic Model of Seawater Intake at Aliveri Power Plant in Greece</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>138</volume><issue>9</issue><spage>812</spage><epage>816</epage><pages>812-816</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>AbstractThe hydraulic performance of pumps in a cooling water intake is directly affected by the nonuniformity of the approach flow at each pump bay, which in turn is influenced by the strength of the cross-flow at the pumps’ common forebay. The effect of the cross-flow velocity at the forebay on the swirl angle in the pump suction pipes is investigated in a hydraulic model of the seawater intake at the Aliveri Power Plant in Greece. The particular intake features two pumps, and a total of 10 cases were examined based on differing values of water depth, number of pumps in operation, and pump flow rate. Velocity measurements at the forebay-dividing cross section were obtained by an acoustic Doppler velocimeter (ADV), while swirl angle in the suction pipe was measured by a vortimeter. A highly nonuniform velocity profile develops at the forebay, when one of the two cleaning channels is closed, and the swirl angle depends solely on the intake forebay geometry when the mean cross-flow velocity drops below a critical value.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HY.1943-7900.0000576</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 2012-09, Vol.138 (9), p.812-816
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_miscellaneous_1864552114
source American Society of Civil Engineers
subjects Angles (geometry)
Applied sciences
Case Studies
Case Study
Cross flow
Electric power generation
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Installations for energy generation and conversion: thermal and electrical energy
Intakes
Marine
Pipe
Pumps
Sea water
Suction
Thermal power plants
title Effect of Cross-Flow Velocity at Forebay on Swirl in Pump Suction Pipe: Hydraulic Model of Seawater Intake at Aliveri Power Plant in Greece
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Cross-Flow%20Velocity%20at%20Forebay%20on%20Swirl%20in%20Pump%20Suction%20Pipe:%20Hydraulic%20Model%20of%20Seawater%20Intake%20at%20Aliveri%20Power%20Plant%20in%20Greece&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Dimas,%20Athanassios%20A&rft.date=2012-09-01&rft.volume=138&rft.issue=9&rft.spage=812&rft.epage=816&rft.pages=812-816&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)HY.1943-7900.0000576&rft_dat=%3Cproquest_cross%3E1855078585%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-9f9b5b3176f624e3b913686a5c753864e5dc5b97885cbbc622ab69fa84de0dd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855078585&rft_id=info:pmid/&rfr_iscdi=true