Loading…
Adaptive matrix column sampling and completion for rendering participating media
Several scalable many-light rendering methods have been proposed recently for the efficient computation of global illumination. However, gathering contributions of virtual lights in participating media remains an inefficient and time-consuming task. In this paper, we present a novel sparse sampling...
Saved in:
Published in: | ACM transactions on graphics 2016-11, Vol.35 (6), p.1-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several scalable many-light rendering methods have been proposed recently for the efficient computation of global illumination. However, gathering contributions of virtual lights in participating media remains an inefficient and time-consuming task. In this paper, we present a novel sparse sampling and reconstruction method to accelerate the gathering step of the many-light rendering for participating media. Our technique explores the observation that the scattered lightings are usually locally coherent and of low rank even in heterogeneous media. In particular, we first introduce a matrix formation with light segments as columns and eye ray segments as rows, and formulate the gathering step into a matrix sampling and reconstruction problem. We then propose an adaptive matrix column sampling and completion algorithm to efficiently reconstruct the matrix by only sampling a small number of elements. Experimental results show that our approach greatly improves the performance, and obtains up to one order of magnitude speedup compared with other state-of-the-art methods of many-light rendering for participating media. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/2980179.2980244 |