Loading…
Reengineered BI-DIME Ligand Core Based on Computer Modeling to Increase Selectivity in Asymmetric Suzuki-Miyaura Coupling for the Challenging Axially Chiral HIV Integrase Inhibitor
Through a computer‐guided approach, new series of monophosphine ligands were designed and developed for asymmetric Suzuki–Miyaura couplings of challenging heterocyclic substrates. Computer modeling pointed to a tunable, yet unexplored quadrant in BI‐DIME, leading to the discovery of the 3′,5′‐dimeth...
Saved in:
Published in: | Advanced synthesis & catalysis 2016-11, Vol.358 (22), p.3522-3527 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Through a computer‐guided approach, new series of monophosphine ligands were designed and developed for asymmetric Suzuki–Miyaura couplings of challenging heterocyclic substrates. Computer modeling pointed to a tunable, yet unexplored quadrant in BI‐DIME, leading to the discovery of the 3′,5′‐dimethyl‐substituted ligand which improved the atropisomeric selectivity of the Suzuki–Miyaura reaction from the previously reported 5:1 dr to 15:1 dr for the synthesis of a challenging HIV integrase intermediate, and up to 24:1 dr with various other quinoline substrates. |
---|---|
ISSN: | 1615-4150 1615-4169 |
DOI: | 10.1002/adsc.201600889 |