Loading…
Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers
Alkali-filled hollow-core fibers are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption (LIAD). However, until now these large optical depth...
Saved in:
Published in: | Optics letters 2015-12, Vol.40 (23), p.5582-5585 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alkali-filled hollow-core fibers are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption (LIAD). However, until now these large optical depths could only be generated for seconds, at most once per day, severely limiting the practicality of the technology. Here we report the generation of the highest observed transient (>10(5) for up to a minute) and highest observed persistent (>2000 for hours) optical depths of alkali vapors in a light-guiding geometry to date, using a cesium-filled Kagomé-type hollow-core photonic crystal fiber (HC-PCF). Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.40.005582 |